因为redis的lru的淘汰策略关注的是key的访问时间,如果是一次性的遍历key那种操作,将导致很多不在访问的key滞留在内存中,将立即需要访问的数据淘汰出去。
因此在redis4.0.0中引入了lfu,lfu是在lru基础上进行优化的,lfu在时间的基础上增加了访问次数的判断。
typedef struct redisObject {
unsigned type:4;
unsigned encoding:4;
unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
* LFU data (least significant 8 bits frequency
* and most significant 16 bits decreas time). */
int refcount;
void *ptr;
} robj;
将原先24bit的lru字段拆分成了两个字段ldt和count, ldt存访问时间,而count则存储访问次数。
对于count只有8bit,所以count的最大值只有255, 所以不是每访问一次就加一。而是通过一个策略进行递增。
1. 淘汰池节点定义
#define EVPOOL_SIZE 16
#define EVPOOL_CACHED_SDS_SIZE 255
struct evictionPoolEntry {
unsigned long long idle; /* Object idle time (inverse frequency for LFU) */
sds key; /* Key name. */
sds cached; /* Cached SDS object for key name. */
int dbid; /* Key DB number. */
};
//全局的淘汰池指针
static struct evictionPoolEntry *EvictionPoolLRU;
2. 淘汰池分配空间
/* Create a new eviction pool. */
void evictionPoolAlloc(void) {
struct evictionPoolEntry *ep;
int j;
ep = zmalloc(sizeof(*ep)*EVPOOL_SIZE);
for (j = 0; j < EVPOOL_SIZE; j++) {
ep[j].idle = 0;
ep[j].key = NULL;
ep[j].cached = sdsnewlen(NULL,EVPOOL_CACHED_SDS_SIZE);
ep[j].dbid = 0;
}
EvictionPoolLRU = ep;
}
只有一个全局的淘汰池,一个淘汰池中有所有db中的淘汰候选key,所以增加了dbid字段,标识当前key所属db。
对于key加入淘汰池,每次都要动态的分配空间,容易造成内存碎片,以及性能问题,所以增加了cached字段,提前分配空间,后续直接使用,减少频繁的分配空间,但是提前分配的空间是255字符,所以当key的长度超过255时还是需要动态分配空间。
3. 对象创建
为了让新创建的对象不至于马上就被淘汰,所以count的初始值为5
#define LFU_INIT_VAL 5
robj *createObject(int type, void *ptr) {
robj *o = zmalloc(sizeof(*o));
o->type = type;
o->encoding = OBJ_ENCODING_RAW;
o->ptr = ptr;
o->refcount = 1;
/* Set the LRU to the current lruclock (minutes resolution), or
* alternatively the LFU counter. */
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
o->lru = (LFUGetTimeInMinutes()<<8) | LFU_INIT_VAL;
} else {
o->lru = LRU_CLOCK();
}
return o;
}
unsigned long LFUGetTimeInMinutes(void) {
return (server.unixtime/60) & 65535;
}
4. 对象访问时,更新计数
因为count只有8bit,最大值只有255,因此不能每访问一次就增加一次计数,所以有了一个增加计数的算法
# 1. A random number R between 0 and 1 is extracted.
# 2. A probability P is calculated as 1/(old_value*lfu_log_factor+1).
# 3. The counter is incremented only if R < P.
/* Logarithmically increment a counter. The greater is the current counter value
* the less likely is that it gets really implemented. Saturate it at 255. */
uint8_t LFULogIncr(uint8_t counter) {
if (counter == 255) return 255;
double r = (double)rand()/RAND_MAX;
double baseval = counter - LFU_INIT_VAL;
if (baseval < 0) baseval = 0;
double p = 1.0/(baseval*server.lfu_log_factor+1);
if (r < p) counter++;
return counter;
}
官方配置文件中的根据factor的不同值的测试结果如下
# +--------+------------+------------+------------+------------+------------+
# | factor | 100 hits | 1000 hits | 100K hits | 1M hits | 10M hits |
# +--------+------------+------------+------------+------------+------------+
# | 0 | 104 | 255 | 255 | 255 | 255 |
# +--------+------------+------------+------------+------------+------------+
# | 1 | 18 | 49 | 255 | 255 | 255 |
# +--------+------------+------------+------------+------------+------------+
# | 10 | 10 | 18 | 142 | 255 | 255 |
# +--------+------------+------------+------------+------------+------------+
# | 100 | 8 | 11 | 49 | 143 | 255 |
# +--------+------------+------------+------------+------------+------------+
#
每次访问时,进行计数的更新(在rdb或者aof重写过程中更新)
并且LOOKUP_NOTOUCH标志的操作也不更新(比如这些命令type,ttl, pttl, swapdb)
robj *lookupKey(redisDb *db, robj *key, int flags) {
dictEntry *de = dictFind(db->dict,key->ptr);
if (de) {
robj *val = dictGetVal(de);
/* Update the access time for the ageing algorithm.
* Don't do it if we have a saving child, as this will trigger
* a copy on write madness. */
if (server.rdb_child_pid == -1 &&
server.aof_child_pid == -1 &&
!(flags & LOOKUP_NOTOUCH))
{
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
unsigned long ldt = val->lru >> 8;
unsigned long counter = LFULogIncr(val->lru & 255);
val->lru = (ldt << 8) | counter;
} else {
val->lru = LRU_CLOCK();
}
}
return val;
} else {
return NULL;
}
}
5. 计数衰减
#define LFU_DECR_INTERVAL 1
unsigned long LFUDecrAndReturn(robj *o) {
unsigned long ldt = o->lru >> 8;
unsigned long counter = o->lru & 255;
if (LFUTimeElapsed(ldt) >= server.lfu_decay_time && counter) {
if (counter > LFU_INIT_VAL*2) {
counter /= 2;
if (counter < LFU_INIT_VAL*2) counter = LFU_INIT_VAL*2;
} else {
counter--;
}
o->lru = (LFUGetTimeInMinutes()<<8) | counter;
}
return counter;
}
当server.lfu_decay_time(可通过lfu-decay-time xxx
配置,默认1分钟)时间内没有被访问时,计数将会被衰减。
- 计数值大于10,则减半
- 小于等于10,则线性递减
比如某个key的count为500,随着时间的递增而衰减过程如下。
6. 从所有db中筛选候选key
原先是每个db自己有自己的淘汰池,现在只有一个全局的淘汰池,候选的key都写入这个淘汰池。
int freeMemoryIfNeeded(void) {
...
if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
{
struct evictionPoolEntry *pool = EvictionPoolLRU;
while(bestkey == NULL) {
unsigned long total_keys = 0, keys;
/* We don't want to make local-db choices when expiring keys,
* so to start populate the eviction pool sampling keys from
* every DB. */
for (i = 0; i < server.dbnum; i++) {
db = server.db+i;
dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
db->dict : db->expires;
if ((keys = dictSize(dict)) != 0) {
evictionPoolPopulate(i, dict, db->dict, pool);
total_keys += keys;
}
}
if (!total_keys) break; /* No keys to evict. */
/* Go backward from best to worst element to evict. */
for (k = EVPOOL_SIZE-1; k >= 0; k--) {
if (pool[k].key == NULL) continue;
bestdbid = pool[k].dbid;
if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {
de = dictFind(server.db[pool[k].dbid].dict,
pool[k].key);
} else {
de = dictFind(server.db[pool[k].dbid].expires,
pool[k].key);
}
/* Remove the entry from the pool. */
if (pool[k].key != pool[k].cached)
sdsfree(pool[k].key);
pool[k].key = NULL;
pool[k].idle = 0;
/* If the key exists, is our pick. Otherwise it is
* a ghost and we need to try the next element. */
if (de) {
bestkey = dictGetKey(de);
break;
} else {
/* Ghost... Iterate again. */
}
}
}
}
...
}
因为都是用idle进行排序淘汰,所以lfu的则用255-count,这样count越小idle越大;
ttl,则使用ULLONG_MAX -ttl值,ttl越小,idle越大,都是满足条件idle越大越先淘汰。
void evictionPoolPopulate(int dbid, dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {
int j, k, count;
dictEntry *samples[server.maxmemory_samples];
count = dictGetSomeKeys(sampledict,samples,server.maxmemory_samples);
for (j = 0; j < count; j++) {
unsigned long long idle;
sds key;
robj *o;
dictEntry *de;
de = samples[j];
key = dictGetKey(de);
/* If the dictionary we are sampling from is not the main
* dictionary (but the expires one) we need to lookup the key
* again in the key dictionary to obtain the value object. */
if (server.maxmemory_policy != MAXMEMORY_VOLATILE_TTL) {
if (sampledict != keydict) de = dictFind(keydict, key);
o = dictGetVal(de);
}
/* Calculate the idle time according to the policy. This is called
* idle just because the code initially handled LRU, but is in fact
* just a score where an higher score means better candidate. */
if (server.maxmemory_policy & MAXMEMORY_FLAG_LRU) {
idle = estimateObjectIdleTime(o);
} else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
/* When we use an LRU policy, we sort the keys by idle time
* so that we expire keys starting from greater idle time.
* However when the policy is an LFU one, we have a frequency
* estimation, and we want to evict keys with lower frequency
* first. So inside the pool we put objects using the inverted
* frequency subtracting the actual frequency to the maximum
* frequency of 255. */
idle = 255-LFUDecrAndReturn(o);
} else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) {
/* In this case the sooner the expire the better. */
idle = ULLONG_MAX - (long)dictGetVal(de);
} else {
serverPanic("Unknown eviction policy in evictionPoolPopulate()");
}
/* Insert the element inside the pool.
* First, find the first empty bucket or the first populated
* bucket that has an idle time smaller than our idle time. */
k = 0;
while (k < EVPOOL_SIZE &&
pool[k].key &&
pool[k].idle < idle) k++;
if (k == 0 && pool[EVPOOL_SIZE-1].key != NULL) {
/* Can't insert if the element is < the worst element we have
* and there are no empty buckets. */
continue;
} else if (k < EVPOOL_SIZE && pool[k].key == NULL) {
/* Inserting into empty position. No setup needed before insert. */
} else {
/* Inserting in the middle. Now k points to the first element
* greater than the element to insert. */
if (pool[EVPOOL_SIZE-1].key == NULL) {
/* Free space on the right? Insert at k shifting
* all the elements from k to end to the right. */
/* Save SDS before overwriting. */
sds cached = pool[EVPOOL_SIZE-1].cached;
memmove(pool+k+1,pool+k,
sizeof(pool[0])*(EVPOOL_SIZE-k-1));
pool[k].cached = cached;
} else {
/* No free space on right? Insert at k-1 */
k--;
/* Shift all elements on the left of k (included) to the
* left, so we discard the element with smaller idle time. */
sds cached = pool[0].cached; /* Save SDS before overwriting. */
if (pool[0].key != pool[0].cached) sdsfree(pool[0].key);
memmove(pool,pool+1,sizeof(pool[0])*k);
pool[k].cached = cached;
}
}
/* Try to reuse the cached SDS string allocated in the pool entry,
* because allocating and deallocating this object is costly
* (according to the profiler, not my fantasy. Remember:
* premature optimizbla bla bla bla. */
int klen = sdslen(key);
if (klen > EVPOOL_CACHED_SDS_SIZE) {
pool[k].key = sdsdup(key);
} else {
memcpy(pool[k].cached,key,klen+1);
sdssetlen(pool[k].cached,klen);
pool[k].key = pool[k].cached;
}
pool[k].idle = idle;
pool[k].dbid = dbid;
}
}
7. 从淘汰池中选取淘汰key
...
/* Go backward from best to worst element to evict. */
for (k = EVPOOL_SIZE-1; k >= 0; k--) {
if (pool[k].key == NULL) continue;
bestdbid = pool[k].dbid;
if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {
de = dictFind(server.db[pool[k].dbid].dict,
pool[k].key);
} else {
de = dictFind(server.db[pool[k].dbid].expires,
pool[k].key);
}
/* Remove the entry from the pool. */
if (pool[k].key != pool[k].cached)
sdsfree(pool[k].key);
pool[k].key = NULL;
pool[k].idle = 0;
/* If the key exists, is our pick. Otherwise it is
* a ghost and we need to try the next element. */
if (de) {
bestkey = dictGetKey(de);
break;
} else {
/* Ghost... Iterate again. */
}
}
...
8. 淘汰key
引入了异步删除(lazyfree-lazy-eviction no
,默认关闭的),并且在异步删除中判断了删除元素的个数,只有大于64时才会进行异步后台任务删除,否则也是同步删除。
在开启了异步删除时,每当释放16个key时就检查一次内存释放已经低于阈值。
...
/* Finally remove the selected key. */
if (bestkey) {
db = server.db+bestdbid;
robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
/* We compute the amount of memory freed by db*Delete() alone.
* It is possible that actually the memory needed to propagate
* the DEL in AOF and replication link is greater than the one
* we are freeing removing the key, but we can't account for
* that otherwise we would never exit the loop.
*
* AOF and Output buffer memory will be freed eventually so
* we only care about memory used by the key space. */
delta = (long long) zmalloc_used_memory();
latencyStartMonitor(eviction_latency);
if (server.lazyfree_lazy_eviction)
dbAsyncDelete(db,keyobj);
else
dbSyncDelete(db,keyobj);
latencyEndMonitor(eviction_latency);
latencyAddSampleIfNeeded("eviction-del",eviction_latency);
latencyRemoveNestedEvent(latency,eviction_latency);
delta -= (long long) zmalloc_used_memory();
mem_freed += delta;
server.stat_evictedkeys++;
notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
keyobj, db->id);
decrRefCount(keyobj);
keys_freed++;
/* When the memory to free starts to be big enough, we may
* start spending so much time here that is impossible to
* deliver data to the slaves fast enough, so we force the
* transmission here inside the loop. */
if (slaves) flushSlavesOutputBuffers();
/* Normally our stop condition is the ability to release
* a fixed, pre-computed amount of memory. However when we
* are deleting objects in another thread, it's better to
* check, from time to time, if we already reached our target
* memory, since the "mem_freed" amount is computed only
* across the dbAsyncDelete() call, while the thread can
* release the memory all the time. */
if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) {
overhead = freeMemoryGetNotCountedMemory();
mem_used = zmalloc_used_memory();
mem_used = (mem_used > overhead) ? mem_used-overhead : 0;
if (mem_used <= server.maxmemory) {
mem_freed = mem_tofree;
}
}
}
...
9. 对于随机策略的优化
原先每次进入内存检测进行淘汰时,都是从db0,db1,db2…dbN, 这样前面的db将删除的key最多,这样db的数据可能平衡。
新的随机策略中,引入了一个静态变量next_db,这样将会每次都从上一次结束的db开始进行淘汰,一轮结束后才又从开头进行扫描进行淘汰。
/* volatile-random and allkeys-random policy */
...
static int next_db = 0;
...
else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
{
/* When evicting a random key, we try to evict a key for
* each DB, so we use the static 'next_db' variable to
* incrementally visit all DBs. */
for (i = 0; i < server.dbnum; i++) {
j = (++next_db) % server.dbnum;
db = server.db+j;
dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
db->dict : db->expires;
if (dictSize(dict) != 0) {
de = dictGetRandomKey(dict);
bestkey = dictGetKey(de);
bestdbid = j;
break;
}
}
}
10. 对于淘汰池的优化
- 将evictionPoolEntry 结构从db中剔除,变成一个全局的指针
原先evictionPoolEntry在每个db中都有一个,默认16个db,大部分都是没用使用的,这样就浪费空间 - 原先是每个db分别进行淘汰, 而现在将所有的db抽样m个,即从m*db_num个元素中淘汰一个
原先只是每个db中抽样m个进行淘汰,现在每次从所有的db中抽样m个进行淘汰,这样更能淘汰最久未访问的
11. 其他的改变
- 原来定义的简单的枚举值,现在定义为位操作值
/* Redis maxmemory strategies. Instead of using just incremental number
* for this defines, we use a set of flags so that testing for certain
* properties common to multiple policies is faster. */
#define MAXMEMORY_FLAG_LRU (1<<0)
#define MAXMEMORY_FLAG_LFU (1<<1)
#define MAXMEMORY_FLAG_ALLKEYS (1<<2)
#define MAXMEMORY_FLAG_NO_SHARED_INTEGERS \
(MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU)
#define MAXMEMORY_VOLATILE_LRU ((0<<8)|MAXMEMORY_FLAG_LRU)
#define MAXMEMORY_VOLATILE_LFU ((1<<8)|MAXMEMORY_FLAG_LFU)
#define MAXMEMORY_VOLATILE_TTL (2<<8)
#define MAXMEMORY_VOLATILE_RANDOM (3<<8)
#define MAXMEMORY_ALLKEYS_LRU ((4<<8)|MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_ALLKEYS)
#define MAXMEMORY_ALLKEYS_LFU ((5<<8)|MAXMEMORY_FLAG_LFU|MAXMEMORY_FLAG_ALLKEYS)
#define MAXMEMORY_ALLKEYS_RANDOM ((6<<8)|MAXMEMORY_FLAG_ALLKEYS)
#define MAXMEMORY_NO_EVICTION (7<<8)
#define CONFIG_DEFAULT_MAXMEMORY_POLICY MAXMEMORY_NO_EVICTION