
Machine Learning
文章平均质量分 80
HappyRocking
坚信强人工智能的到来
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
三大决策树的比较——ID3、C4.5、CART
类型ID3C4.5CART解决问题分类分类分类、回归划分指标信息增益增益率基尼指数指标特点会偏向可取值数目加多的属性会偏向可取值数目较少的属性划分规则选择信息增益最大的属性先找出信息增益高于平均水平的属性,再从中选择增益率最高的选择划分后基尼指数最小的属性优缺点DI3会偏向可取值数目加多的属性ID3算法并未给出处理连续数据的方法ID3算法不能处理带有缺失值的数据集ID3算法只有树的生成, 所以容易过拟合C4.5可以处理连续值C4.5...原创 2020-08-26 18:04:51 · 1848 阅读 · 0 评论 -
RNN 与 LSTM 的原理详解
本文主要讲解了 RNN 和 LSTM 的结构、前馈、反馈的原理,参考了https://www.jianshu.com/p/f3bde26febed/与https://blog.csdn.net/zhaojc1995/article/details/80572098等文章,并纠正了一些公式的错误。RNN(Recurrent Neural Network)是一类用于处理序列数据的神经网络。什么...原创 2018-11-10 10:54:26 · 20490 阅读 · 3 评论 -
SVM理论基础——原问题及其对偶问题的推导
代价函数推导给定一个二分类问题的训练样本集D={(x1,y1),(x2,y2),...,(xm,ym)},yi∈{−1,+1}D={(x1,y1),(x2,y2),...,(xm,ym)},yi∈{−1,+1}D=\{(\boldsymbol{x}_1,y_1),(\boldsymbol{x}_2,y_2),...,(\boldsymbol{x}_m,y_m)\},y_i\in \{-1, +...原创 2018-07-02 14:47:00 · 8168 阅读 · 1 评论 -
CNN详解——反向传播过程
CNN的反向传播过程,从原理上讲,与普通的反向传播相同(都使用了链式法则),从具体形式上讲,CNN的反向传播公式又比较特殊,这是因为CNN独有的4个特点:局部感知:卷积核和图像卷积时,每次卷积核所覆盖的像素只是一小部分。这一小部分也叫做感受野。权值共享:同一层的每个感受野被卷积时,卷积参数都是相同的。多卷积核:同一层的每个感受野可能被多个不同的卷积核分别进行卷积,输出多个通道(每个卷积核...原创 2018-05-30 16:56:23 · 6826 阅读 · 0 评论 -
Tensorflow API 讲解——tf.estimator.Estimator
class Estimator(builtins.object)介绍Estimator 类,用来训练和验证 TensorFlow 模型。 Estimator 对象包含了一个模型 model_fn,这个模型给定输入和参数,会返回训练、验证或者预测等所需要的操作节点。 所有的输出(检查点、事件文件等)会写入到 model_dir,或者其子文件夹中。如果 model_dir 为空,则默认...原创 2018-05-29 18:22:04 · 23543 阅读 · 8 评论 -
fasttext 的安装和使用
介绍fasttext 是一种用于词语表达和语句分类的方法,包括一套数据集合和分类工具。需要一般地,fasttext 可以安装在 MacOS 和 linux 系统上。它会使用到 C++,因此需要系统支持 C++11 的编译。包括:(g++-4.7.2 或者更高) 或者 (clang-3.3 或者更高)fasttext 需要使用一个 MakeFile 来编译,因此需要系统支...原创 2018-06-12 17:01:27 · 12722 阅读 · 1 评论 -
反向传播算法的公式推导
概念反向传播(Back Propagation, BP)算法是使用梯度下降法相关的算法来优化一个神经网络时计算每一层梯度的方法,主要使用了多元函数的链式法则。公式推导1、模型不失一般性,我们考虑以下4层结构的神经网络(全连接): 2、符号说明 符号 含义 nlnln_l 网络层数 yjyjy_j 输出层第jjj类标签 ...原创 2018-05-24 15:45:00 · 2851 阅读 · 0 评论 -
Tensorflow API 讲解——tf.layers.conv2d
conv2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initia...原创 2018-05-08 18:54:45 · 22204 阅读 · 4 评论 -
Tensorflow API 讲解——tf.estimator.Estimator.evaluate
evaluate(self, input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)作用使用验证集 input_fn 对 model 进行验证。 对于每一步,执行 input_fn(返回数据集的一个 batch)。已经进行了 steps 个 batch,或者input_fn 抛出了出界异常(OutO...原创 2018-05-07 18:16:28 · 9916 阅读 · 2 评论 -
二分类指标:正确率、精确率、召回率等的区别
二分类指标的区别我们可以采用一些定量的分类指标来评价一个二分类器性能的好坏,这些指标往往根据分类器对某个数据集的分类结果进行计算。分类矩阵我们可以使用一个矩阵来描述分类结果: 实际\预测 预测为正 预测为负 实际为正 TP FN 实际为负 FP TNTPTPTP:实际为正、且划分为正的样本数,真正数。 FPFPFP:...原创 2018-04-25 17:01:39 · 17195 阅读 · 0 评论 -
非极大值抑制(NMS)讲解
非极大值抑制(Non-maximum suppression,NMS)是一种去除非极大值的算法,常用于计算机视觉中的边缘检测、物体识别等。算法流程:给出一张图片和上面许多物体检测的候选框(即每个框可能都代表某种物体),但是这些框很可能有互相重叠的部分,我们要做的就是只保留最优的框。假设有N个框,每个框被分类器计算得到的分数为Si, 1<=i<=N。0、建造一个存放待处理候选框的集合H,...原创 2018-04-17 10:48:08 · 20591 阅读 · 7 评论 -
序列标注中的BIO标注介绍
一、序列标注 序列标注(Sequence labeling)是我们在解决NLP问题时经常遇到的基本问题之一。在序列标注中,我们想对一个序列的每一个元素标注一个标签。一般来说,一个序列指的是一个句子,而一个元素指的是句子中的一个词。比如信息提取问题可以认为是一个序列标注问题,如提取出会议时间、地点等。 序列标注一般可以分为两类:1、原始标注(Raw labeling):每个元素都...原创 2018-03-27 18:35:22 · 71386 阅读 · 12 评论 -
协同过滤的简介
协同过滤(collaborative filtering, CF)是当前推荐技术和算法中使用最广泛和认可度最高的算法之一。一、概念协同过滤指的是根据与某个人(或商品)的相似物的分析,来判断此人(或商品)的特点、价值和潜在属性。本质上是归纳法,即根据特殊的物品的特点,来推断一般性的这一大类物品的特点。比如想买一件衣服,你会向和自己穿着品味相似的人征求意见,原因是他们推荐的衣服可能对于原创 2017-12-11 22:17:28 · 1262 阅读 · 0 评论 -
python 生成随机图形验证码
使用python的pillow来生成随机图片验证码。1、首先安装pillowpip install pillow2、代码比较简单,使用到了 Pillow 的最基本的用法,如生成一张图片、生成画笔、选择字体、进行绘画(画圆、画线、写字等)。# 生成随机图形验证码import randomfrom PIL import Image,ImageDraw,ImageFont# 创建原创 2017-12-05 00:35:17 · 1960 阅读 · 0 评论 -
迭代函数系统生成分形
迭代函数系统(Iterated Function System,IFS)可以用来创建分形图案,他所创建的图形永远是自相似的。有一个很著名的树叶图形的绘制便是使用了此原理。在一个二维平面中,有4种映射函数,可以将一个点映射到另一个 位置:1. x(n+1)= 0 y(n+1) = 0.16 * y(n)2. x(n原创 2017-12-06 00:53:38 · 3904 阅读 · 0 评论 -
L-System分形
L-System(Lindenmayer system)是一种生成分形图案的方法。与迭代函数系统生成分形依靠数字的迭代不同,L-System依赖的是字符的迭代。字符间也有迭代公式,可以将字符换成某个字符串,随着迭代次数的增加,字符串长度越来越大,而字符串中的每一个字符,都代表着一种对线条的操作,如延伸、旋转等。最后将字符串依次执行一遍,便会得到一张分形图案。字符的含义:F/f:向前原创 2017-12-08 00:36:42 · 3944 阅读 · 0 评论 -
NMF方法简介和聚类应用
1、NMF方法简介NMF(Non-negative Matrix Factorization,非负矩阵分解)是一种矩阵分解方法,最早是在1999年Nature杂志刊登的由D.D.Lee和H.S.Seung两位科学家提出的一个对非负矩阵研究的成果。NMF的目标:给定一个所有元素均为非负的矩阵V,维数为n*m。要寻找到两个非负矩阵W和H,使得尽可能满足V=WH。其中W维数为n*r,H维数为原创 2014-12-28 10:37:00 · 12435 阅读 · 2 评论