h3i4j
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
65、AI与数据隐私:面部识别与关联规则隐藏技术解析
本文详细解析了人工智能在面部识别和数据隐私保护中的应用。基于AI的实时CCTV面部识别追踪系统通过HOG算法、姿态识别和特征测量等模块,为警方追踪失踪人员和罪犯提供了高效工具。同时,文章探讨了关联规则隐藏算法在保护敏感数据中的作用,分析了其雪崩效应与效率计算,并讨论了实际应用中的挑战与应对思路。最后,文章展望了两种技术的结合可能性及未来发展趋势,强调其在社会安全与隐私保护中的重要价值。原创 2025-08-01 04:59:31 · 12 阅读 · 0 评论 -
64、森林健康动态空间分析与基于AI的实时监控追踪系统
本文探讨了森林健康动态空间分析与基于AI的实时监控追踪系统两大主题。在森林健康分析方面,研究通过NDVI和Landsat光学数据对印度西米利帕尔老虎保护区的森林物候与降水关系进行长期分析,并利用模型识别森林变化原因,推荐使用GEE平台支持生态系统管理。对于AI实时监控追踪系统,文章对比了现有系统与新系统的差异,展示了基于HOG算法和face_recognition库的新流程优势。最后,文章展望了两个领域的发展趋势,强调了其在生态保护与社会安全中的重要意义。原创 2025-07-31 16:42:30 · 9 阅读 · 0 评论 -
63、利用谷歌地球引擎云对印度奥迪沙邦西米利帕尔老虎保护区森林健康动态进行空间分析
本研究利用谷歌地球引擎(GEE)结合2000-2019年的Landsat卫星数据,对印度奥迪沙邦西米利帕尔老虎保护区的森林健康动态进行了全面的空间分析。通过谐波回归、自协方差、自相关和自回归模型等方法,揭示了不同森林类型(茂密森林、中度茂密森林和开阔森林)与降水水平之间的长期关系,并有效解决了云覆盖导致的数据缺失问题。研究结果表明,森林物候模式对气候变化响应敏感,特别是最强谐波项的振幅比旱季NDVI对降水更为敏感。本研究展示了遥感技术在森林生态系统监测中的重要作用,并为未来森林管理和生态保护提供了科学依据和原创 2025-07-30 09:35:14 · 11 阅读 · 0 评论 -
62、GPU加速神经网络在心电图心律失常分类中的应用
本文介绍了一种基于GPU加速神经网络的心电图(ECG)心律失常分类方法。通过使用离散小波变换(DWT)去除噪声,并结合主成分分析(PCA)进行特征提取,随后采用多层GPU加速的神经网络进行二进制和多类分类。实验基于MIT-BIH心律失常数据库,结果表明该方法具有较高的准确率(96.1702%)和效率,优于传统分类器如ANN、RNN和CNN。文章还探讨了该技术在医疗诊断、远程医疗和健康管理中的应用前景及未来发展方向。原创 2025-07-29 16:05:07 · 8 阅读 · 0 评论 -
61、医学影像智能分析:脑肿瘤与心脏病诊断的前沿技术
本文探讨了医学影像智能分析技术在脑肿瘤与心脏病诊断中的应用。针对脑肿瘤,重点介绍了深度卷积神经网络(CNN)在肿瘤自动分割与分类中的作用,包括卷积层、ReLU层、池化层和全连接层的工作原理,并通过Dice系数等多指标评估模型性能。对于心脏病诊断,讨论了基于GPU加速的神经网络方法在ECG信号处理中的应用,涵盖了预处理、特征提取和分类过程。文章还分析了两种技术的优势与挑战,并展望了未来发展方向,包括算法优化、数据增加、多模态融合以及个性化诊断等。原创 2025-07-28 15:20:24 · 5 阅读 · 0 评论 -
60、脑肿瘤的自动分割与分类技术解析
本文详细解析了脑肿瘤的自动分割与分类技术,涵盖了图像预处理、分割、特征提取和分类等关键步骤。通过高斯滤波、区域生长算法、修改后的Bhattacharyya距离以及基于模糊C均值聚类的可变形模型(DMFCM)等方法,实现了对MRI图像中肿瘤区域的精准分割。在特征提取和分类阶段,文章介绍了边缘直方图、灰度共生矩阵(GLCM)、深度信念网络(DBN)和深度卷积神经网络(DCN)等先进技术,并结合猫群优化算法(CSO)和鸟群算法提升分类效率。文章还分析了各技术的优劣及适用场景,并展望了未来发展趋势,为脑肿瘤的精准诊原创 2025-07-27 13:19:19 · 10 阅读 · 0 评论 -
59、教育领域AI聊天机器人与脑肿瘤自动分割分类技术解析
本文探讨了人工智能在教育和医疗领域的两大应用:教育领域的AI聊天机器人及其在教学中的多种用途,以及脑肿瘤在MRI图像中的自动分割与分类技术。分析了AI聊天机器人目前面临的技术、语言和心理挑战,同时介绍了脑肿瘤检测的传统方法及其局限性。基于深度学习的改进方法被提出,并详细解析了其流程,包括数据采集、预处理、分割、特征提取、分类及评估过程。研究表明,人工智能技术在教育和医疗领域均具有巨大潜力,但需要持续优化以满足实际需求。原创 2025-07-26 09:23:48 · 10 阅读 · 0 评论 -
58、人工智能聊天机器人在教育领域的应用与挑战
本文探讨了人工智能聊天机器人在教育领域的应用与挑战。文章详细介绍了聊天机器人的设计方法,包括基于规则、机器学习和集成方法,并讨论了其在教育领域中的作用,如互动学习、成本效益和多场景应用。同时,文章通过多个案例分析,展示了聊天机器人在教育中的实际效果,并深入探讨了其面临的语言、实施和教育方面的挑战。最后,文章提出了应对这些挑战的策略,并展望了聊天机器人未来的发展趋势,如技术融合、个性化服务和多领域应用拓展。原创 2025-07-25 15:37:37 · 8 阅读 · 0 评论 -
57、新型混合升压转换器与教育领域AI聊天机器人技术解析
本文探讨了新型混合升压转换器(HBC)在固体氧化物燃料电池(SOFC)系统中的应用,以及AI聊天机器人在教育领域的技术发展与实际应用。首先,文章分析了现代电力系统与可再生能源的发展背景,介绍了燃料电池和高增益DC/DC转换器的工作原理,并详细阐述了HBC的结构、仿真研究结果及其在提升电能转换效率中的作用。其次,文章聚焦教育领域,解析了AI聊天机器人的定义、结构与分类,并通过一个机器学习课程的案例展示其在学生反馈收集和分析中的应用效果。最后,文章展望了混合升压转换器和教育AI聊天机器人的未来发展趋势,包括效率原创 2025-07-24 10:01:54 · 7 阅读 · 0 评论 -
56、数据集聚类算法中最优簇数的确定方法
本文详细介绍了在聚类分析中确定数据集最优簇数的关键问题,比较了多种常见评估指标,如DB指数、CH指数、KL指数、Gap统计量、DeD和曲线方法等。同时提出了一种新的最优簇数估计算法OCNE,该算法基于k-均值聚类计算簇内方差,并通过验证指数VI(k)来自动选择最优k值。实验结果表明,OCNE算法在多个真实和合成数据集上均表现出较好的稳定性和通用性,且不依赖于数据集的规模或实例数量。文章最后分析了各算法的优缺点,并对未来的研究方向提出了展望。原创 2025-07-23 12:41:27 · 14 阅读 · 0 评论 -
55、可重构天线与数据集聚类算法的研究与分析
本博文围绕可重构天线的设计与数据集聚类算法中最优簇数的确定展开研究。可重构天线采用两个C形贴片和一个T形贴片结构,并通过PIN二极管实现多频段切换,适用于4G、5G和WLAN等无线通信场景。同时,博文分析了多种确定聚类最优簇数的方法,包括传统方法、分裂与合并方法和进化计算方法,并结合肘部法、轮廓系数法和Davies-Bouldin指数法等指标进行了应用流程探讨,为无线通信与数据挖掘领域提供了重要的技术参考。原创 2025-07-22 16:04:06 · 6 阅读 · 0 评论 -
54、孟加拉语辱骂评论检测与可重构天线技术研究
本博文探讨了两个独立的研究领域:孟加拉语辱骂评论检测和可重构天线技术。在孟加拉语辱骂评论检测部分,研究了多种机器学习算法和特征提取方法,发现SVM和SGD模型结合TF-IDF向量化器表现最佳。可重构天线部分研究了通过PIN二极管开关实现多频段切换的设计,并讨论了未来优化方向。两个领域均展示了重要的研究价值和应用前景。原创 2025-07-21 14:27:51 · 18 阅读 · 0 评论 -
53、乳腺癌亚型预测与孟加拉语辱骂评论检测的机器学习应用
本博客探讨了机器学习在两个不同领域的应用:乳腺癌亚型预测和孟加拉语辱骂评论检测。在乳腺癌亚型预测中,通过使用TCGA数据库的单组学数据,结合多种特征选择方法、数据不平衡处理和分类模型,构建了性能优异的预测模型,其中随机森林和SVC表现最佳。而在孟加拉语辱骂评论检测任务中,使用支持向量机(SVM)和基于修改Huber损失函数的随机梯度下降(SGD)方法取得了优于其他算法的检测性能。博客还对两个应用的异同进行了分析,并展望了未来研究方向,包括多组学融合、深度学习应用以及多语言辱骂检测系统的开发。原创 2025-07-20 10:12:46 · 8 阅读 · 0 评论 -
52、全数字ADC与乳腺癌亚型预测技术解析
本博客深入解析了全数字模拟-数字转换器(ADC)中的时间-数字转换器(TDC)设计,提出了一种高效的脉冲收缩TDC架构,并通过实验验证了其在分辨率、功耗和有效位数方面的优良性能。同时,博客探讨了乳腺癌亚型预测的研究,结合癌症基因组图谱(TCGA)的多组学数据,系统性地分析了不同数据类型、特征选择方法和机器学习算法对预测性能的影响。实验结果表明,综合多组学数据并采用神经网络模型可显著提高乳腺癌亚型预测的准确性和可靠性。研究为电子工程和生物医学领域的发展提供了重要参考。原创 2025-07-19 16:35:48 · 8 阅读 · 0 评论 -
51、使用聊天机器人定制后端逻辑及全数字 ADC 设计
本博文探讨了两种前沿技术的设计与实现:一是利用聊天机器人定制后端逻辑,通过意图识别、任务生成与代码模板机制,实现智能高效的后端开发;二是提出了一种基于电压-时间转换器(VTC)与时间-数字转换器(TDC)的全数字模拟-数字转换器(FD-ADC),以提升ADC在分辨率和转换速度方面的性能。文章分析了两者的架构、流程及优化方向,并展望了它们在物联网、高速数据采集等领域的融合应用潜力。原创 2025-07-18 11:31:38 · 8 阅读 · 0 评论 -
50、光子上转换毫米波生成与后端逻辑定制聊天机器人技术解析
本文介绍了两种关键技术:光子上转换毫米波生成技术和定制后端逻辑的聊天机器人技术。前者通过调制和传输实现高速通信,探讨了其理论基础、仿真实验、技术优势与不足,并提出了码间串扰的解决方案;后者则聚焦于后端开发自动化,结合编程语言特性和规则模型,实现自然语言到机器代码的转化。文章还对两种技术的综合应用在物联网等领域的潜力进行了展望,并分析了它们未来的发展趋势。原创 2025-07-17 12:52:14 · 10 阅读 · 0 评论 -
49、新冠疫情与毫米波通信:深度学习预测与光子技术创新
本文探讨了深度学习在新冠疫情预测和5G毫米波通信技术中的创新应用。通过使用CNN-LSTM模型,研究人员成功预测了多个国家的新冠确诊病例趋势,展示了模型的高效性和准确性。同时,提出了一种新的基于光子技术的无滤波器频率16倍频毫米波生成方案,有望推动5G RoF系统的发展。研究在疫情分析和5G通信领域均具有重要的应用前景。原创 2025-07-16 12:25:18 · 7 阅读 · 0 评论 -
48、安全环原理、能源与信息网络及 COVID-19 传播预测
本博客探讨了安全环原理在能源与信息网络中的应用,并结合深度学习技术预测COVID-19的传播趋势。安全环原理为复杂系统的构建与理解提供了一个控制论框架,强调了局部自治和方向性原则对系统稳定性和合作能力的重要性。同时,研究提出了一种基于CNN和LSTM的混合深度学习模型,用于预测疫情的未来发展趋势,并通过多个评估指标验证了模型的有效性。未来的研究将拓展安全环原理的计算机模拟应用,并改进预测模型以引入更多特征数据和跨学科算法。原创 2025-07-15 11:24:13 · 7 阅读 · 0 评论 -
47、智能电网通信网络可靠性评估与安全环原理
本文探讨了智能电网通信网络的可靠性评估方法,包括网络准确性指标(NAI)和网络可靠性恶化价值(NRDW)的计算,以及关键节点对系统可靠性的影响。同时,介绍了安全环原理(SRP)及其在系统保护和生存能力中的作用。此外,还分析了能源与信息网络的耦合关系,讨论了其在提高能源效率、增强系统可靠性和促进可持续发展方面的应用及挑战。最后,提出了未来研究的方向,包括模型拓展、原理深化和跨领域合作等。原创 2025-07-14 15:22:34 · 12 阅读 · 0 评论 -
46、目标识别与智能电网通信网络可靠性评估
本文探讨了目标识别与智能电网通信网络可靠性评估两个研究领域。目标识别部分介绍了基于语义分割的方法,使用DeepLab v3+模型在CamVid数据集上进行训练和测试,并分析了模型在不同类别上的性能表现及优缺点。智能电网部分提出了一种基于图形计算模型的可靠性评估方法,通过路径可靠性、网络准确性指标(NAI)、结构重要性(SI)和网络可靠性恶化价值(NRDW)等指标,评估智能电网通信网络的稳定性,并通过IEEE 14总线系统进行案例验证。最后,文章对两个领域的发展方向进行了展望。原创 2025-07-13 10:00:46 · 8 阅读 · 0 评论 -
45、多准则决策与目标识别技术解析
本博文探讨了多准则决策方法(TOPSIS和VIKOR)与基于语义分割的目标识别技术。在多准则决策部分,介绍了两种方法的步骤,并通过五边形直觉模糊数距离指标扩展了它们的应用,以软件公司招聘候选人为例进行了具体分析。在目标识别部分,利用CamVid数据集和Deeplabv3+网络进行了语义分割实验,评估了模型的性能,并分析了其在不同类别上的表现。最后,对两种技术的应用现状进行了总结,并展望了未来的研究方向。原创 2025-07-12 16:35:42 · 6 阅读 · 0 评论 -
44、深度学习模型与多准则决策方法解析
本文深入解析了Transformer深度学习模型及其在自然语言处理中的应用,重点介绍了BERT模型的卓越表现。同时,围绕多准则决策方法,详细阐述了模糊集与直觉模糊集的理论基础,并介绍了TOPSIS和VIKOR方法的改进与应用。结合五角直觉模糊数的新距离度量,提出更高效的决策方案。通过案例分析与方法对比,展示了这些技术在复杂决策问题中的实用价值和广阔前景。原创 2025-07-11 13:04:57 · 6 阅读 · 0 评论 -
43、疫情假新闻检测与尼泊尔新闻分类技术解析
本文探讨了新冠疫情假新闻检测与尼泊尔新闻分类的技术方法。在假新闻检测部分,对比了多种模型在不同数据集上的表现,发现k-NN-mALO模型在准确率、精确率和召回率方面表现优异,能够有效识别新冠疫情相关的虚假新闻。在尼泊尔新闻分类方面,研究人员从多个新闻网站收集并预处理数据,利用BERT、LSTM、GRU等模型进行分类训练,以提升新闻分类的准确性和效率。文章最后展望了这些技术在信息处理领域的应用前景,并提出了未来优化方向。原创 2025-07-10 16:10:28 · 8 阅读 · 0 评论 -
42、基于改进蚁狮优化器的COVID - 19虚假新闻检测
本文提出了一种基于改进蚁狮优化器(mALO)的COVID-19虚假新闻检测方法。通过引入混沌初始化策略,改进了传统蚁狮优化器的性能,以提升特征选择的效果。研究使用Koirala数据集,并结合k-近邻分类器进行实验验证。实验结果表明,改进的mALO算法在多个评估指标上优于其他元启发式方法,为检测疫情相关的虚假新闻提供了更高效的解决方案。原创 2025-07-09 13:16:49 · 30 阅读 · 0 评论 -
41、基于Sharma - Mittal熵和鲸鱼优化算法的图像多级阈值分割
本文提出了一种基于Sharma-Mittal熵和鲸鱼优化算法(WOA)的图像多级阈值分割方法。该方法通过设计基于Sharma-Mittal熵的目标函数,并利用WOA算法高效搜索最优阈值组合,最多可实现6级图像分割。实验结果表明,与GWO、TLBO和GA等传统优化算法相比,该方法在PSNR、均匀性、SSIM和MSSIM等图像质量评估指标上表现更优,具有更高的分割精度和收敛速度。未来研究方向包括引入更先进的优化算法和扩展该方法在医学图像、卫星图像等领域的应用。原创 2025-07-08 14:27:11 · 6 阅读 · 0 评论 -
40、手机辐射对脑电图/心电图的影响及图像分割的阈值优化研究
本研究探讨了手机辐射对人体心电图(ECG)和脑电图(EEG)信号的影响,发现手机辐射会引起ECG时域参数和EEG功率值的显著变化,同时ECG和EEG信号之间存在显著的相干性。基于此,设计了人工神经网络集成模型,通过ECG信号预测EEG参数,为评估手机辐射对大脑的影响提供了新方法。此外,研究提出了一种基于Sharma-Mittal熵和鲸鱼优化算法(WOA)的多级阈值图像分割方法(WOA-based MSEMT),有效降低了传统方法的计算复杂度并提高了分割准确率。实验表明,该方法在卫星、农业和医学图像分割中均表原创 2025-07-07 13:49:20 · 9 阅读 · 0 评论 -
39、多根查找粒子群优化算法与手机辐射对EEG/ECG的影响研究
本文介绍了多根查找粒子群优化算法(MRF-PSO)在求解非线性方程或方程组中的应用,以及其在并行计算环境下的性能测试结果。同时,研究探讨了手机辐射对脑电图(EEG)和心电图(ECG)信号的影响,分析了辐射对心脏和大脑功能及两者相互作用的潜在干扰。此外,文章还提出了一种基于人工神经网络(ANN)的集成模型,用于预测手机辐射对EEG信号的影响。研究结果表明,MRF-PSO算法在多根求解问题中具有较高的有效性,而手机辐射会对ECG和EEG信号及其相干性产生显著影响。原创 2025-07-06 15:46:54 · 6 阅读 · 0 评论 -
38、基于粒子群优化的多根求解算法:MRF - PSO
本文介绍了一种基于粒子群优化的多根求解算法——MRF-PSO。该算法通过部署多个粒子群在搜索空间的不同区域并行探索,能够有效求解非线性方程或方程组的多个根。文章回顾了PSO算法的基本原理及其在数值求解中的适配方法,详细阐述了MRF-PSO的多根求解机制、流程设计、优势与挑战,并结合实际案例展示了算法的应用效果。未来的研究方向包括算法改进、参数自适应调整及应用拓展等。原创 2025-07-05 15:45:15 · 6 阅读 · 0 评论 -
37、基于深度大象群优化的攻击检测及非线性函数多根查找算法
本文介绍了一种基于深度信念网络(DBN)和大象群优化(EHO)算法的网络攻击检测方法(DEHO),以及一种用于非线性函数多根查找的MRF-PSO算法。DEHO通过DBN提取特征并利用EHO优化权重,显著提升了云环境中攻击检测的准确率、召回率等性能指标。MRF-PSO则结合粒子群优化算法,有效解决了非线性函数的多根查找问题,具有无需导数信息、全局搜索能力强等优势。两种方法分别在网络安全和数值计算领域展示了优化算法的强大应用潜力。原创 2025-07-04 12:55:05 · 9 阅读 · 0 评论 -
36、LoRa网络管理与可视化及云虚拟化基础设施攻击检测
本文探讨了LoRa网络的管理和可视化以及云虚拟化基础设施中的攻击检测问题。在LoRa网络方面,设计了数据可视化组件,支持性能指标展示和设备配置。在云安全方面,分析了多租户、数据保护和服务协议等挑战,综述了传统检测技术,并提出了一种结合全息熵特征提取和基于大象群优化(EHO)调整的深度信念网络(DBN)分类模型的新型攻击检测框架。最后,总结了关键技术并展望了未来研究方向。原创 2025-07-03 14:08:31 · 7 阅读 · 0 评论 -
35、LoRa网络组件管理与可视化系统解析
本文介绍了一种针对LoRa@FIIT网络的组件管理与数据可视化解决方案,旨在应对物联网设备快速增长带来的信息处理挑战。系统基于React、Node.js和WebSocket等技术,实现了网络性能指标的实时可视化、设备配置管理以及数据的多维度展示。通过简化数据库查询流程、提供直观的用户界面以及支持移动端访问,该系统极大提升了网络管理员的工作效率。此外,系统还部署了在线演示版本,方便用户实时查看数据包交付率、信号覆盖范围及设备状态等关键指标。原创 2025-07-02 16:11:40 · 8 阅读 · 0 评论 -
34、LoRa网络优化:多臂老虎机算法的应用与评估
本文探讨了多臂老虎机算法(MABAs)在LoRa网络优化中的应用与评估,重点比较了UCB和TS算法在能耗、数据包交付率(PDR)、SF分布和碰撞控制方面的性能。研究发现,TS算法在PDR和终端节点连接数方面表现更优,而UCB在活跃模式时间和平均碰撞次数上略有优势。实验基于一个结合真实LoRa网络服务器和模拟接入点的测试平台,模拟了多达100个移动终端节点的场景。文章还展望了未来的研究方向,包括增加SF间碰撞模拟、测试更多多臂老虎机算法、使用真实硬件和物理障碍物以及研究更复杂的网络场景。原创 2025-07-01 10:12:09 · 8 阅读 · 0 评论 -
33、基于多臂老虎机算法的LoRa网络优化
本文探讨了基于多臂老虎机算法(MABA)对LoRa网络进行优化的方法,重点分析了如何通过选择最佳通信参数(如扩频因子、传输功率等)来减少数据包碰撞、提高数据包交付率并节省电池电量。文章介绍了LoRa技术和LoRa@FIIT协议的特性,详细讨论了平稳、非平稳和对抗性多臂老虎机算法的应用,并提出了一个网络测试平台以评估汤普森采样算法在动态环境中的性能。实验结果显示,汤普森采样算法在多种环境中均表现良好,尤其适合资源受限的低功耗设备。原创 2025-06-30 14:42:09 · 6 阅读 · 0 评论 -
32、早期糖尿病预测的机器学习模型比较评估
本文对九种常见的机器学习模型在早期糖尿病预测中的性能进行了全面比较评估。基于孟加拉国收集的520个样本数据集,结合准确率、灵敏度、特异度和ROC AUC分数等指标,研究发现极端梯度提升模型(XGBoost)表现最优,准确率达97.50%,ROC AUC分数为0.9759。此外,决策树和树基集成方法(如随机森林和梯度提升)也表现出较高的预测能力。文章旨在为医疗领域提供模型选择参考,并探讨了未来在模型优化和多模态数据融合中的研究方向。原创 2025-06-29 10:03:39 · 7 阅读 · 0 评论 -
31、用于度约束最小生成树问题的迭代局部搜索算法
本文提出了一种基于迭代局部搜索算法(ILS)解决度约束最小生成树(DCMST)问题的方法。DCMST问题在实际场景中广泛应用,如道路系统设计、VLSI设计和通信网络等。由于该问题属于NP难问题,传统的精确方法难以高效求解,因此本文采用ILS元启发式框架,结合初始解生成、扰动机制、局部搜索和接受准则四个组件,实现对问题的高效求解。实验结果表明,ILS在107个基准实例上表现优异,优于现有的HES-EA、ABA和HSSGA方法。此外,文章还对ILS在欧几里得与非欧几里得实例上的表现进行了深入分析,并提出了未来改原创 2025-06-28 11:21:09 · 6 阅读 · 0 评论 -
30、分布式发电对配电网的影响评估
本文全面分析了分布式发电(DG)对配电网的影响,重点探讨了保护系统和电压调节两个核心问题。从技术、财务和环境角度阐述了DG的益处,并详细介绍了DG接入配电网时所面临的挑战及多种解决方案。文章涵盖了一系列先进技术,如区域分类与风险分析、合并保护、主动孤岛运行、优化继电器参数、多智能体技术、自适应强化方法、基于傅里叶变换的模糊逻辑保护模块、三相转换器等,用于改善保护系统性能;同时,针对电压调节问题,提出了削减电网功率、重构配电网络、有载分接开关(OLTC)、静止同步补偿器(STATCOM)、逆变器控制、能源需求原创 2025-06-27 15:50:19 · 7 阅读 · 0 评论 -
29、电子舞曲子流派分类与分布式发电影响评估
本文探讨了电子舞曲(EDM)子流派的机器学习分类方法,以及分布式发电(DG)在配电网中的影响评估。在EDM分类部分,通过数据收集、清洗、预处理和多种机器学习算法的应用,实现了对House、Techno、Drum and Bass、Hardstyle和Trap等流派的高效分类,最高F-分数达到0.913。在分布式发电部分,分析了DG的类型、融合特征、对电网的影响,并提出了优化DG集成的策略。研究展示了机器学习在音乐分析中的潜力,以及DG在可持续能源发展中的重要作用。原创 2025-06-26 15:53:05 · 6 阅读 · 0 评论 -
28、基于预训练变压器模型与深度学习结合的命名实体识别及电子舞曲子流派分类
本文探讨了基于预训练变压器模型与深度学习结合的命名实体识别以及电子舞曲子流派分类。在命名实体识别部分,结合BERT、PhoBERT与LSTM、BiLSTM等深度学习方法,在越南语数据集VLSP 2016上进行了实验,结果表明PhoBERT + BiLSTM + CRF模型表现最佳。在电子舞曲子流派分类任务中,使用Spotify平台的元数据并结合SVM、随机森林和MLP等机器学习模型进行实验,结果显示随机森林模型效果最优。研究展示了两种任务的最新方法,并提出了未来可能的改进方向。原创 2025-06-25 10:25:49 · 7 阅读 · 0 评论 -
27、基于深度学习方法的银行电话营销预测
本文探讨了基于深度学习方法对银行电话营销成功率的预测。通过对多个深度学习和机器学习模型的比较,研究发现深度神经网络(DNN)在测试准确率、灵敏度、特异性、精确率和 F1-分数等指标上表现最佳。研究使用了开源数据集,并在模型训练前对数据进行了标准化预处理。此外,还通过主成分分析(PCA)验证了数据特征的重要性,并通过可视化分析(如 ROC 曲线)评估了模型性能。最终建议银行在实际电话营销中优先采用深度学习模型以提高预测准确性和营销效率。原创 2025-06-24 10:59:48 · 6 阅读 · 0 评论 -
26、纳米流体水动力学与传热的CFD研究及银行电话营销预测
本博文围绕两个主题展开:一是基于CFD的纳米流体(Al₂O₃和TiO₂)在直管与螺旋管中的水动力学及传热性能研究,分析速度、浓度等因素对压降和传热的影响;二是银行电话营销预测,探讨了深度学习在客户数据分析和营销优化中的应用。研究发现,Al₂O₃纳米流体在传热和压降方面表现更优,螺旋管结构能显著增强传热效果;电话营销预测则展示了数据驱动方法在提升营销效率中的潜力。原创 2025-06-23 11:33:17 · 10 阅读 · 0 评论