收藏!一篇Graph+AI Agents最新技术综述

最近出了一篇关于图(Graphs)与人工智能代理(AI Agents)结合的综述性研究,提出了一个分类框架来组织这一领域的研究进展,详细讨论了图技术在AI代理的规划、执行、记忆和多代理协调等核心功能中的作用。

图片

Graph与AI Agents相结合的总体示意图。

Refer to caption

  • 图方法论:利用图进行图数据组织和知识提取

  • 人工智能代理方法论:基于大型语言模型(LLM)的基础模型和基于强化学习(RL)的学习范式,构成了人工智能代理的核心流程

  • 人工智能代理用于图:代理在图建模和学习方面的强大能力,例如图注释、合成和理解

  • 图用于人工智能代理:图和图学习在增强代理核心功能(包括代理规划、执行、记忆和多代理协调)中的作用和潜力

  • 代表性应用

  • 挑战和未来机遇

图片

一、Graph用于Agent规划

Refer to caption

1. 任务推理

  • 知识图辅助推理:利用知识图(KG)辅助AI代理进行任务推理,通过提取多跳子图信息,增强代理对任务的理解和推理能力。代表方法包括QA-GNN、ToG、KG-CoT、RoG、MindMap和PoG。

  • 结构化推理:通过树状或图状结构组织LLM代理的中间思考过程,提高推理效率和准确性。代表方法包括ToT、RATT、GoT、Graph of Thoughts和RwG。

2. 任务分解
  • 任务依赖图(TDG):将复杂任务分解为多个子任务,并构建任务依赖图来表示子任务之间的依赖关系。代表方法包括DAG-Plan、LGC-MARL、VillagerAgent、DynTaskMAS和Plan-over-Graph。

  • 规划方法:利用LLM的推理能力和GNN优化子任务执行路径,提高任务分解和执行的效率。代表方法包括AgentKit、DAG-Plan和FGRL。

3. 任务决策搜索

  • 状态空间图(SSG):通过构建状态空间图,利用蒙特卡洛树搜索(MCTS)等算法进行高效决策搜索。代表方法包括MCTS、PromptAgent、LATS、M-MCTS、MENS-DTRL、MCGS、GBOP和CMCGS。

  • 优化方法:通过引入记忆机制、进化算法和图结构优化,提高搜索效率和决策质量。

二、Graph用于Agent执行

在AI代理的执行阶段,图技术通过优化工具使用和增强环境交互,显著提升了代理的执行效率和准确性。

Refer to caption

具体来说:

  • 工具使用:图技术帮助代理更高效地管理和调用大量工具,通过构建工具图和优化工具调用路径,减少令牌消耗,提高工具使用的准确性和效率。

  • 环境交互:图技术通过启发式和基于学习的关系建模,增强了代理对环境的理解和交互能力。场景图和动态学习方法为代理提供了更丰富的环境信息,使其能够更有效地感知和响应环境变化。

三、Graph用于Agent记忆管理

Refer to caption

1. 记忆组织
  • 知识图谱(KG):通过构建知识图谱,AI代理能够将知识和经验以结构化的形式存储,便于后续的检索和推理。例如,AriGraph、IKG、Graphusion、MemGraph、Mind Map、StructuralMemory、DAMCS、GraphRAG 和 KG-Retriever 等系统利用知识图谱来组织记忆。

2. 记忆检索
  • 图检索方法:通过结合语义相似性和图度量,设计定制化的检索器,提高从图结构记忆中检索信息的准确性和效率。例如,G-Retriever 和 GFM-RAG 结合语义相似性和图度量进行检索,SubgraphRAG 提供基于查询相关性的灵活子图检索机制,LightRAG 提出双检索系统,GRAG 提出线性时间检索策略,PathRAG 通过流式剪枝减少检索延迟。

3. 记忆维护

  • 动态更新和维护:一些方法关注于如何动态地更新和维护图结构的记忆,以适应新的经验和交互。例如,A-MEM 通过动态索引和链接创建相互连接的知识网络,Zep 通过时间感知的层次化知识图谱引擎动态整合对话数据,HippoRAG 和 LightRAG 采用动态增量图更新策略,KG-Agent 引入 LLM 进行知识图谱更新,InstructRAG 采用 RL 代理进行图维护。

四、Graph用于Multi-Agent协调

图技术通过优化消息传递和通信拓扑,显著提升了多智能体系统的协调能力:

Refer to caption

1. 协调消息传递
  • 任务依赖关系:利用任务依赖图(TDG)优化消息传递,如 FLOW-GNN 和 LGC-MARL。

  • 任务分配关系:通过任务分配关系优化信息交换,如 RandStructure2Vec 和 MAGNNET。

  • 环境特定关系:基于环境特性建模代理关系,如 GRL 和 MAGNNETO,或动态学习关系权重,如 GraphComm 和 MAGI。

2. 协调拓扑优化
  • 边重要性测量:通过注意力机制或参数化边权重学习潜在边,如 DICG 和 G2ANet。

  • 图自编码器优化:使用图自编码器预测代理节点之间的边,如 G-Designer 和 GNN-VAE。

  • 强化学习:通过奖励函数优化代理节点之间的边,如 HGRL 和 GPTSwarm。

图片

    https://github.com/YuanchenBei/Awesome-Graphs-Meet-Agentshttps://arxiv.org/pdf/2506.18019Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities

    如何学习AI大模型 ?

    “最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

    这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

    我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

    我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。保证100%免费】🆓

    CSDN粉丝独家福利

    这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

    读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

    (👆👆👆安全链接,放心点击)

    对于0基础小白入门:

    如果你是零基础小白,想快速入门大模型是可以考虑的。

    一方面是学习时间相对较短,学习内容更全面更集中。
    二方面是可以根据这些资料规划好学习计划和方向。

    👉1.大模型入门学习思维导图👈

    要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

    对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
    在这里插入图片描述

    👉2.AGI大模型配套视频👈

    很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
    在这里插入图片描述

    在这里插入图片描述

    👉3.大模型实际应用报告合集👈

    这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

    在这里插入图片描述

    👉4.大模型实战项目&项目源码👈

    光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
    在这里插入图片描述

    👉5.大模型经典学习电子书👈

    随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
    在这里插入图片描述

    👉6.大模型面试题&答案👈

    截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
    在这里插入图片描述

    为什么分享这些资料?

    只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

    这些资料真的有用吗?

    这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

    资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

    在这里插入图片描述
    在这里插入图片描述

    CSDN粉丝独家福利

    这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

    (👆👆👆安全链接,放心点击)

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值