LU decomposition

本文介绍了一种有效的求解线性方程组AX=b的方法——LU分解,并给出了具体的实现算法。该方法通过将矩阵A分解为下三角矩阵L和上三角矩阵U来简化求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    LU分解,是一种比较有用的求解线性矩阵方程AX = b的方法。当然,它只是在未知数量有限的情况下才能发挥它的优势。怎么求解A = LU呢,方法挺多,这里介绍一种常用的方法。直接上代码:

for(int i = 0; i < N; i++)

{

         for(int j = i + 1; j < N; j++)

        {

                Aji = Aji / Aii;                  //update L

                for(int k = i+1; k < N; k++)

                     Ajk -= Aik * Aji;      //update U.

        }

}

这里直接将分解之后的LU存放在原始数组中。这里Aii是U里面的主对角单元,而下三角L的主对角单元都为1,不储存。

利用LU decomposition求解方程,如果碰到一些病态的问题,可以使用pivoting 技术,在Numerical Reape??一书中有详细介绍。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值