grape
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
49、视频检索系统的创新与应用
本文介绍了两种创新的视频检索系统:VERGE 视频检索系统和基于语义提取及局部区域对象提议的视频搜索系统。VERGE 系统集成了视觉相似度搜索、高级概念检索、自动查询制定、聚类、文本搜索及多模态融合等多种功能模块,提供直观的用户界面和丰富的交互模式,适用于多种视频检索任务。另一系统则侧重于利用语义信息和空间特征,通过对象与动作概念提取、去除噪声概念、元数据集成等方法提升检索精度和效率。文章还对两种系统的功能模块、用户界面和应用场景进行了对比分析,并展望了视频检索系统的未来发展趋势,包括技术融合、交互性提升、原创 2025-07-21 14:22:30 · 16 阅读 · 0 评论 -
48、视频搜索系统:从Sloth Search到ITEC CoViSS的升级之路
本文详细介绍了从Sloth Search System到ITEC CoViSS的视频搜索系统演进过程。Sloth Search为用户提供文本和草图查询功能,支持高效的视频浏览和检索。CoViSS作为VBS赛事中的高性能系统,通过改进相似性搜索、概念搜索、镜头检测、协作功能和用户界面,显著提升了搜索效率和用户体验。文章还分析了CoViSS 2018版本在不同搜索任务中的表现,并探讨了未来在技术优化、协作智能化和用户体验层面的发展方向。原创 2025-07-20 10:28:49 · 17 阅读 · 0 评论 -
47、基于草图的视频搜索系统:原理与实现
本文介绍了两种创新的视频搜索系统:基于草图的相似性搜索和Sloth搜索系统(SSS)。基于草图的相似性搜索通过颜色和轮廓匹配,实现了更精确的视频检索,具有灵活性高、结果细化能力强和场景适应性好的特点。Sloth搜索系统通过对象识别、场景分类和特征索引提高了大规模视频搜索的效率,具备处理速度快、索引全面和扩展性好的优势。文章还分析了两种系统的应用场景、未来发展趋势以及面临的挑战。原创 2025-07-19 09:49:50 · 10 阅读 · 0 评论 -
46、视频检索工具的创新与优化
本文介绍了两款创新性的视频检索工具:SIRET视频检索工具和基于协作特征图(CFM)的草图相似性搜索工具。SIRET支持关键词、颜色草图和示例图像等多种查询方式,并对底层检索模型进行了改进,提升了检索准确性和用户体验;CFM系统则通过手绘草图结合颜色和轮廓信息进行视频检索,进一步扩展了基于草图的交互式搜索能力。文章还对两款工具的功能、检索模型、界面设计及实际应用效果进行了对比分析,并展望了未来视频检索工具的发展趋势,包括智能化、高效化和个性化等方向。原创 2025-07-18 14:14:59 · 15 阅读 · 0 评论 -
45、视频搜索技术:从概念到实践
本文深入介绍了两种先进的视频搜索技术:VIREO KIS 系统的改进以及融合关键字搜索和视觉探索的视频搜索系统。文章详细分析了两种技术的实现方法、系统优势和适用场景,并通过对比展示了它们在不同条件下的应用优势。同时,还探讨了视频搜索技术在媒体、安防、教育等领域的应用前景以及未来发展趋势,包括多模态融合、智能化查询和实时搜索等方向。原创 2025-07-17 16:20:57 · 12 阅读 · 0 评论 -
44、视频检索系统:vitrivr 与 VIREO KIS 的新进展
本文介绍了两款创新的视频检索系统:vitrivr 和 VIREO KIS 的最新进展。vitrivr 是一个开源的基于内容的多媒体检索系统,具有模块化架构,支持视觉查询和文本查询,并新增了用户界面和近似检索功能。VIREO KIS 则专注于视频已知项搜索任务,优化了颜色草图查询和概念检索方式,提高了检索效率和准确性。文章还对比了两个系统的特性,探讨了它们的实际应用步骤以及未来视频检索技术的发展趋势。原创 2025-07-16 12:49:50 · 17 阅读 · 0 评论 -
43、3D扫描与视频浏览新技术:旋转相机轨道与圆形时间线
本文介绍了两种创新技术:一种基于旋转相机轨道的3D扫描技术,以及一种用于视频浏览的圆形时间线技术。3D扫描技术通过旋转相机轨道实现对物体的高精度扫描,尤其适用于易碎或精致物体的扫描场景;而圆形时间线技术则通过环形时间线设计,提供更高效、直观的视频导航体验。两种技术在各自领域展现出广泛的应用前景,并可实现数据采集与展示的一体化及多维度信息的整合。原创 2025-07-15 13:18:06 · 10 阅读 · 0 评论 -
42、3D 技术在内容创作与物体扫描中的创新应用
本博客探讨了3D技术在内容创作与物体扫描中的创新应用。首先介绍了一种多相机微环境,用于捕捉物体时空变化的多视角延时视频;其次是基于虚拟现实的Ontlus系统,支持用户在沉浸式环境中协作创作3D内容;最后提出了一种基于可编程3D打印旋转相机轨道的3D扫描方案,适用于易变形物体的数字化建模。文章还分析了这些技术的互补性、发展趋势以及在科研、艺术、工业制造等领域的应用前景。原创 2025-07-14 09:06:10 · 14 阅读 · 0 评论 -
41、多领域技术创新:从点云分类到图像与日志探索
本文探讨了多领域技术创新,涵盖激光雷达点云的目标分类、本地/私有图像的探索与搜索系统ImageX,以及虚拟现实环境下的生活日志探索原型。激光雷达点云通过深度投影和Faster R-CNN实现目标分类,为自动驾驶和机器人导航提供环境感知能力。ImageX系统利用ResNet152和PCA压缩解决无标注图像的搜索难题,提升图像探索效率。虚拟现实原型通过自定义VR查询界面,带来沉浸式的生活日志浏览体验。文章还分析了这些技术的发展趋势与挑战,展望了其未来应用潜力。原创 2025-07-13 12:22:25 · 7 阅读 · 0 评论 -
40、自动配件分割与交互试戴及相关技术研究
本文探讨了计算机视觉领域的三项关键技术:自动配件分割与交互试戴系统、内窥镜视频中的自动烟雾分类以及基于 LiDAR 点云的目标分类。分别介绍了各项技术的实现流程、优势与局限性,并分析了它们的应用场景与未来发展潜力。这些技术在电商、医疗辅助和自动驾驶等领域展现出广阔的应用前景。原创 2025-07-12 14:55:43 · 8 阅读 · 0 评论 -
39、医疗与生活领域的创新技术应用
本文介绍了三款医疗与生活领域的创新技术应用:用于可视化妇科腹腔镜手术动作的 ActionVis、用于食物卡路里估算的 AR DeepCalorieCam 以及结合自动配饰分割的交互式试戴系统。文章详细分析了各应用的技术框架、优势和未来发展方向,展示了这些技术如何提升医疗效率和生活便利性。原创 2025-07-11 13:03:16 · 9 阅读 · 0 评论 -
38、多领域技术探索:从社交图像场地预测到VR交互及手术视频可视化
本博客探讨了多领域技术探索,涵盖社交图像场地预测、虚拟现实中的时空三维数据交互,以及妇科腹腔镜手术动作的可视化工具。社交图像场地预测利用用户打卡行为和视觉内容信息,提高了场地识别的准确性;虚拟现实交互技术通过创新的VR界面和高效的数据格式,提升了时空三维数据的交互体验;手术动作可视化工具则为医疗领域提供了高效的内镜记录浏览与分析手段。文章还分析了这些技术之间的关联,并展望了其在旅游推荐、教育培训、远程医疗等领域的应用潜力。原创 2025-07-10 09:38:22 · 8 阅读 · 0 评论 -
37、社交图像的场所预测解决方案
本文针对社交图像的场所预测问题,提出了一种融合视觉信号与时间信号的解决方案。通过将图像内容与用户的历史签到行为结合,并引入时间动态建模,显著提高了预测的准确性。实验基于NUS-MSS数据集,验证了模型在多个城市中的优越性能。同时,文章还探讨了未来的研究方向,如多模态信息融合与自适应模型调整。原创 2025-07-09 10:30:12 · 10 阅读 · 0 评论 -
36、车辆语义提取与检索及社交图像场所预测技术解析
本文深入解析了车辆语义提取与检索技术以及社交图像场所预测技术。车辆语义技术通过原子模型对停车场监控视频中的车辆颜色和运动轨迹进行高效索引和查询,解决了传统方法中检索效率低的问题;而社交图像场所预测则结合用户视觉内容和LBSN签到历史,提升了预测准确性。文章还探讨了两种技术的优势、问题及未来发展方向,并提出融合应用的潜在价值。原创 2025-07-08 13:01:10 · 9 阅读 · 0 评论 -
35、网络视频长尾与停车场车辆语义提取检索分析
本文探讨了网络视频和停车场监控视频的数据特征及分析方法。在网络视频分析方面,研究了视频年龄、时长和类型对观看量、点赞量和踩量的影响,并揭示了视频受欢迎程度的长尾分布特征;在停车场车辆语义提取方面,提出了一种结合背景减除、车辆检测跟踪和颜色运动信息提取的解决方案,以支持高效的车辆检索。研究成果为视频平台优化内容推荐策略和智能交通管理提供了重要参考。原创 2025-07-07 09:38:23 · 6 阅读 · 0 评论 -
34、电影角色关系分析与网络视频特性洞察
本博客围绕电影角色关系分析和网络视频特性研究展开,介绍了基于SRN模型的核心角色确定方法及其在社区识别中的应用,实验验证了方法的有效性。同时,通过分析超过1亿个YouTube视频的元数据,揭示了视频观看次数、点赞数随时间变化的规律,以及视频受欢迎程度与时长的关系和长尾分布特征。最后提出了未来改进方向,包括优化社区识别算法和融合视听特征与SRN模型,以推动相关领域的发展。原创 2025-07-06 15:16:38 · 13 阅读 · 0 评论 -
33、SRN:基于社交网络的电影角色关系分析
本文提出了一种基于社交关系网络(SRN)的视频角色社区分析方法。该方法通过角色识别、SRN 网络构建和社区分析三个阶段,将电影中的角色关系转化为图结构,并通过核心角色识别和社区划分挖掘角色之间的潜在关系。实验结果表明,该方法在处理具有丰富场景和角色的电影视频时具有良好的效果,为视频内容分析和角色关系挖掘提供了新的思路。原创 2025-07-05 15:45:46 · 11 阅读 · 0 评论 -
32、Wyner - Ziv分布式视频编码的源失真估计方法
本文提出了一种用于Wyner-Ziv(WZ)分布式视频编码的源失真估计方法,该方法仅利用解码器可用的编码信息,无需原始WZ帧即可实现失真估计,属于无参考(NR)算法。通过对量化和重构引起的失真进行建模,并结合拉普拉斯分布参数估计,该方法能够准确测量视频帧的平均失真。实验结果表明,该方法具有较高的估计精度和实时性,适用于视频监控、视频会议和移动视频等多种应用场景。原创 2025-07-04 16:31:53 · 9 阅读 · 0 评论 -
31、3D形状生成与分布式视频编码技术解析
本博文探讨了3D形状生成与分布式视频编码技术的关键方法与实验结果。在3D形状生成方面,通过构建双向映射和自编码器模型,实现了形状结构的紧凑表示与高效合成,并结合可视化引导用户交互设计。同时,研究了形状抽象、插值及有效性约束等策略,验证了方法在不同数据集和分割层次下的有效性。在分布式视频编码方面,提出了一种新的源失真估计方法,综合考虑量化与重建失真,适用于实时视频应用。整体研究为3D建模和视频编码提供了新思路与优化方向。原创 2025-07-03 13:22:39 · 5 阅读 · 0 评论 -
30、智能视频推荐与3D形状生成技术解析
本文详细解析了两种前沿技术——智能视频推荐系统SeqSense和3D形状生成方法ShapeCreator的原理、方法与应用。SeqSense通过主题序列挖掘提升推荐的多样性与上下文感知能力,而ShapeCreator则利用自编码器和同构数据处理生成创新性3D形状。文章还探讨了两者的技术融合可能性,展望了它们在未来数字化领域的发展前景。原创 2025-07-02 11:39:06 · 13 阅读 · 0 评论 -
29、SeqSense:基于主题序列挖掘的视频推荐
SeqSense 是一种基于主题序列挖掘的视频推荐方法,通过结合LDA主题建模和序列模式挖掘技术,从大规模开放在线课程(MOOC)的教学大纲中提取视频主题间的顺序关系,并将其集成到传统基于内容的推荐系统中。该方法能够生成更加多样化、新颖且贴合学习顺序的视频推荐结果,特别适用于教育领域和终身学习者的需求。实验结果显示,SeqSense 在推荐的多样性和新颖性方面显著优于传统基于内容的推荐方法。原创 2025-07-01 11:45:18 · 10 阅读 · 0 评论 -
28、用于视觉实例检索的可扩展深度特征包方法
本文提出了一种用于视觉实例检索的可扩展深度特征包方法(BoDVW),旨在解决背景干扰和计算复杂度高的问题。通过基于L2范数的特征选择方案,有效过滤背景和无关特征,保留具有判别性的语义特征。同时,BoDVW模型结合倒排索引和ITQ二进制哈希技术,显著降低了计算和存储成本。在多个数据集上的实验表明,该方法在保持高性能的同时,实现了快速检索和高效存储,具有良好的可扩展性。原创 2025-06-30 16:48:51 · 6 阅读 · 0 评论 -
27、室内场景布局估计与图像实例检索技术解析
本文详细解析了两种技术:基于Project Tango移动设备的室内场景布局估计在线方法,以及用于图像实例检索的Bag-of-Deep-Visual-Words(BoDVW)模型。前者通过提取线段、生成图、最短路径求解和后处理得到房间布局,具有高效性和良好的几何精度;后者通过局部特征提取、能量筛选和量化匹配,提升了检索的准确性和效率。文章还总结了两种技术的应用前景与未来发展方向。原创 2025-06-29 10:16:31 · 8 阅读 · 0 评论 -
26、利用Project Tango设备生成房间平面图
本文介绍了一种基于Project Tango设备的在线方法,用于生成房间平面图。该方法结合深度传感器和鱼眼相机的数据,通过平面块提取、模型更新、可见性多边形计算、墙壁与杂物分离、用户交互以及房间布局估计等步骤,实现了在复杂场景下对房间结构的高效建模。通过可选的用户交互,方法的鲁棒性得到了增强,能够应对遮挡、数据缺失和传感器误差等问题。该方法适用于中等大小、纹理合理的房间场景,为自动化平面图生成提供了一种实用解决方案。原创 2025-06-28 12:44:17 · 15 阅读 · 0 评论 -
25、基于互补学习器的鲁棒实时视觉跟踪方法
本文提出了一种基于互补学习器的鲁棒实时视觉跟踪方法,旨在解决在线更新中的稳定性-可塑性困境。该方法基于Staple跟踪器,通过融合HOG、Color Names和强度等互补特征,提高对光照变化、形状变形和背景杂波的鲁棒性。引入降维策略以提高效率,并利用平均峰值相关能量(APCE)动态控制在线CUR滤波器的激活与更新,从而增强跟踪失败时的恢复能力。在OTB15数据集上的实验表明,该方法在准确性和鲁棒性方面优于现有主流跟踪器,同时保持较高的运行速度,适用于安防监控、智能交通和机器人视觉等实际应用。原创 2025-06-27 12:47:12 · 7 阅读 · 0 评论 -
24、基于CNN中融入PCA损失的行人重识别与基于互补学习器的鲁棒实时视觉跟踪
本文围绕计算机视觉领域的两个重要任务:行人重识别和视觉目标跟踪展开研究。在行人重识别方面,提出了一种新的损失函数——PCA损失,通过优化类内方差,显著提高了特征的区分性和识别准确率。实验表明,该方法在多个数据集上表现出色,尤其是在类内样本充足的情况下效果更佳。在视觉目标跟踪方面,提出了一种基于互补学习器的鲁棒实时跟踪方法,通过融合低维互补特征、自适应在线检测器和颜色直方图模型,有效解决了模型漂移和尺度估计问题。在OTB15数据集上的实验结果显示,该跟踪方法在效率、准确性和鲁棒性方面均具有优异表现。本文的研究原创 2025-06-26 14:53:30 · 9 阅读 · 0 评论 -
23、轻量级视频存储与行人重识别技术解析
本文介绍了两种技术:LVFS(轻量级视频存储系统)和基于CNN融合PCA损失的行人重识别算法。LVFS通过优化存储架构和任务管理模块,实现了高清视频流的高速写入和高效查询,适用于大规模视频监控场景。行人重识别部分提出了一种结合softmax损失和PCA损失的深度学习方法,通过提取更具可区分性的特征,提高了识别准确率。实验结果验证了两种技术的有效性,同时指出了未来优化和扩展的方向。原创 2025-06-25 12:50:49 · 11 阅读 · 0 评论 -
22、多媒体分类与轻量级视频存储文件系统的创新探索
本文探讨了多媒体分类和视频监控存储的创新解决方案。在多媒体分类方面,提出了GLkEL方法,通过同时利用全局和局部标签相关性提升分类性能,未来可进一步考虑标签负相关性。针对视频监控数据存储的挑战,设计了轻量级文件系统LVFS,采用循环存储模式、分层存储组织和时间戳索引机制,有效支持高并发写入、存储空间循环利用和高效数据检索,实验验证其性能优于通用文件系统和云存储方案。原创 2025-06-24 09:26:00 · 10 阅读 · 0 评论 -
21、k-Labelsets 用于多媒体分类的研究与实践
本文研究并提出了一种新的多标签分类方法 GLkEL,通过结合全局与局部标签相关性,提升多媒体分类任务的性能。GLkEL 基于 HOLCA 策略建模高阶标签相关性,并利用 k-Labelsets 方法构建分类模型。实验表明,GLkEL 在多个真实世界多媒体数据集上优于现有的多标签分类方法,尤其在同时考虑全局与局部标签相关性时表现出色。原创 2025-06-23 16:09:11 · 7 阅读 · 0 评论 -
20、基于瞳孔反应的隐式情感视频标签与多媒体多标签分类方法
本文介绍了两种创新的方法:基于瞳孔反应的隐式情感视频标签方法和多媒体多标签分类的GLkEL方法。前者利用LSTM和决策级融合技术,有效减少了个体差异对情感识别的影响,并在情感视频分类任务中取得了较高的准确率和F1分数,但仍然面临样本不平衡带来的挑战;后者GLkEL方法通过结合全局与局部高阶标签相关性,提升了多媒体多标签分类的性能。未来的研究方向包括多模态生理信号融合、实时情感监测以及方法的实际应用拓展。原创 2025-06-22 14:01:56 · 6 阅读 · 0 评论 -
19、动作与情感视频分析技术:C3D 与瞳孔响应的创新应用
本文探讨了两种先进的视频分析技术:Global and Local C3D集成系统用于动作识别,以及基于瞳孔响应的隐式情感视频标签方法。C3D系统通过优化采样间隔和投票方法,在动作识别准确率上显著优于现有方法,适用于视频检索和智能监控。瞳孔响应方法通过定义基线并结合SVM与LSTM模型,有效解决个体差异问题,可用于视频推荐和市场调研。文章还展望了两种技术的融合应用及未来发展方向。原创 2025-06-21 14:30:16 · 9 阅读 · 0 评论 -
18、第一人称交互动作识别的全局与局部C3D集成系统
本文提出了一种基于C3D网络的全局与局部集成系统,用于第一人称视角下的交互动作识别。该系统通过全局动作C3D捕捉观察者的自我运动,通过局部显著运动C3D分析行动者的动作,结合两者的识别结果,显著提高了识别的准确性。实验结果表明,该集成系统比现有方法在识别准确率上有明显提升。未来的研究方向包括优化网络架构、扩展数据集以及实现实时应用。原创 2025-06-20 12:29:45 · 29 阅读 · 0 评论 -
17、用于空中书写识别的融合网络
本文提出了一种用于空中书写识别的融合网络,结合卷积神经网络(CNN)和双向长短期记忆网络(BLSTM),同时利用空间和时间特征,以提高识别准确率。空中书写无需附加设备,字符通过手势在空中连续书写而成,分为覆盖书写风格和朝写风格。实验结果显示,该融合网络在字母和数字手势识别上的准确率均优于单独的CNN和BLSTM网络,并优于已有工作。通过调整BLSTM单元数量,可以进一步优化网络性能。此外,该技术在智能穿戴设备、智能家居控制和教育领域等具有广泛应用前景。原创 2025-06-19 16:44:43 · 7 阅读 · 0 评论 -
16、食品照片识别与空中书写识别技术研究
本博文围绕食品照片识别与空中书写识别技术展开研究。食品照片识别系统基于ResNet-50模型,构建了涵盖249个食品类别的大型数据集,支持新加坡熟食中心常见食物的识别与营养信息查询。研究还分析了系统在真实用户场景中的性能,并通过用户研究验证了DietLens在食物记录中的优越性。另一方面,空中书写识别融合网络结合CNN与BLSTM的优势,实现了高精度的动态手势识别。研究为未来饮食追踪和智能设备交互提供了创新思路和技术支持。原创 2025-06-18 13:13:53 · 8 阅读 · 0 评论 -
15、音乐翻唱识别与食物照片识别技术新进展
本文探讨了音乐翻唱识别和食物照片识别技术的最新进展。在音乐翻唱识别方面,高效的双层模型显著提升了识别准确率和效率;而在食物照片识别领域,基于深度学习的DietLens系统为饮食跟踪提供了直观便捷的解决方案。文章还分析了两项技术的应用场景、挑战与优化方向,并探讨了它们的融合可能性与未来发展趋势。原创 2025-06-17 10:03:15 · 11 阅读 · 0 评论 -
14、高效双层模型助力翻唱歌曲识别
本文提出了一种基于2DFM和Qmax的双层模型,用于高效识别翻唱歌曲。该模型结合了高效的第一层候选生成和精确的第二层排名细化,解决了大规模音乐数据库中高精度与高效率难以兼顾的问题。通过实验验证,CENS特征表现出色,KD-Tree和Ball-Tree显著提升了查询效率。该方法在音乐版权保护和音乐推荐系统等领域具有广泛的应用前景。原创 2025-06-16 13:24:06 · 14 阅读 · 0 评论 -
13、基于时间上下文的有效动作检测系统
本文提出了一种基于时间上下文的有效动作检测系统,旨在从长未裁剪视频中高效准确地检测动作。该系统包含两个主要步骤:提议生成和提议分类。在提议生成中,采用基于时间上下文感知的稀疏编码方法,利用包含动作及其上下文信息的片段进行字典学习,生成高质量的动作提议。在提议分类中,首先通过二元分类区分动作与非动作,然后进行多类分类并引入提议长度的后验概率调整方法,以提升检测性能。实验结果表明,该方法在THUMOS 2014数据集上表现优异,显著优于现有先进方法,尤其在平均精度均值和召回率方面取得了显著提升。原创 2025-06-15 11:37:41 · 6 阅读 · 0 评论 -
12、跨模态检索与动作检测技术解析
本文深入解析了跨模态检索与动作检测领域的关键技术。针对跨模态检索问题,提出了域不变子空间学习(DISL)方法,通过子空间投影与多模态图约束,有效减少模态间的数据分布差异,保留原始数据结构。此外,还介绍了基于时间上下文和提案长度后验概率的动作检测系统,该系统通过优化提案生成和选择标准,在长未修剪视频中实现高效准确的动作检测。两种技术分别在Wiki、Pascal VOC、Pascal Sentence和THUMOS14等多个数据集上验证了其优越性能,具备广泛的实际应用前景。原创 2025-06-14 11:34:47 · 7 阅读 · 0 评论 -
11、基于深度学习的脑电情感识别与跨模态检索的数据增强方法
本博文探讨了基于深度学习的数据增强方法在脑电情感识别和跨模态检索中的应用与效果。研究显示,在脑电情感识别任务中,数据增强显著提升了深层模型(如ResNet)的准确率,而对浅层模型(如SVM)效果有限。同时,高频段脑电信号对情感识别的贡献更大。在跨模态检索领域,提出的域不变子空间学习(DISL)方法通过结合样本加权和图正则化,有效关联多模态数据,在多个基准数据集上表现出优越性能。博文最后对两种任务的技术要点、应用场景及未来发展方向进行了综合分析与展望。原创 2025-06-13 15:33:54 · 5 阅读 · 0 评论 -
10、基于深度卷积神经网络的脑电情绪识别数据增强方法
本文提出了一种基于数据增强的脑电(EEG)情绪识别方法,旨在解决深度学习模型在情绪识别中因训练样本不足而导致的性能下降问题。通过在两个标准EEG情绪数据集(SEED和MAHNOB-HCI)上的实验,验证了向原始训练数据添加高斯噪声可以有效增加样本数量,显著提升基于LeNet和ResNet等深度卷积神经网络的情绪识别准确率。同时,对比了SVM、LeNet和ResNet在数据增强前后的情绪识别性能,分析了不同模型对数据增强的响应差异以及数据增强参数的影响。研究结果为解决EEG数据短缺问题提供了可行的解决方案,并原创 2025-06-12 11:20:38 · 13 阅读 · 0 评论