【限时免费】 X2Knowledge 技术文档:安装指南与使用说明

X2Knowledge 技术文档:安装指南与使用说明

【免费下载链接】X2Knowledge 是一个高效的开源知识提取器工具,专为企业知识库建设而设计,是RAG应用和企业知识管理的理想预处理工具。 【免费下载链接】X2Knowledge 项目地址: https://gitcode.com/leonda/X2Knowledge

1. 安装指南

1.1 本地安装要求

  • Python 3.12+
  • Flask框架
  • pytesseract(OCR功能)
  • Tesseract OCR引擎
  • MarkItDown库
  • Docling库(可选,用于增强PDF转换)

1.2 本地安装步骤

  1. 克隆仓库:
git clone https://github.com/leonda123/X2Knowledge.git
cd X2Knowledge
  1. 创建虚拟环境并安装依赖:
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate
pip install -r requirements.txt
  1. 安装可选转换引擎:
pip install docling
  1. 安装Tesseract OCR引擎:
  • Windows:从GitHub Tesseract releases下载安装
  • macOS:brew install tesseract
  • Linux:sudo apt-get install tesseract-ocr
  1. 运行应用:
python app.py
  1. 访问 http://127.0.0.1:5000/

1.3 Docker部署

Docker Compose方式
git clone https://github.com/leonda123/X2Knowledge.git
cd X2Knowledge
docker-compose up -d

访问 http://localhost:5000/

手动构建Docker镜像
docker build -t x2knowledge .
docker run -d -p 5000:5000 --name x2knowledge -v ./uploads:/app/uploads -v ./logs:/app/logs x2knowledge

2. 使用说明

2.1 基本使用流程

  1. 选择转换模式(文本或Markdown)
  2. Markdown模式下选择转换引擎:
    • MarkItDown:Office文档优化,处理速度快
    • Docling:适合含复杂表格的PDF文件
    • Marker:最高精度处理含表格/公式/图片的文档
  3. 上传文档(或拖放)
  4. 查看、复制或下载转换结果
  5. 使用Markdown预览功能查看格式化结果

2.2 网页转换功能

  • 支持将网页内容转为结构化Markdown
  • 可使用CSS选择器(如#content, .article)精确提取内容
  • 可选择性移除页眉页脚

2.3 知识库预处理

  • 将Markdown转为JSON/CSV问答对
  • 自动从标题生成问题,从内容生成答案
  • 支持带父子关系的层级标题结构

3. API使用文档

3.1 核心API接口

  • 文本转换:POST /api/convert
  • 文本转换并保存:POST /api/convert-file
  • Markdown转换(MarkItDown):POST /api/convert-to-md
  • Markdown转换并保存(MarkItDown):POST /api/convert-to-md-file
  • Markdown转换(Docling):POST /api/convert-to-md-docling
  • Markdown转换并提取图片(Docling):POST /api/convert-to-md-images-file-docling
  • 表格提取(Docling):POST /api/export-tables-docling
  • HTML转换(Docling):POST /api/convert-to-html-docling
  • 在线文档转Markdown(Docling):POST /api/convert-online-docling
  • URL转Markdown:POST /api/convert-url-to-md
  • 知识库存储预处理:POST /preprocess-for-storage

3.2 API调用示例

import requests

url = "http://localhost:5000/api/convert-to-md"
files = {'file': open('sample.docx', 'rb')}
response = requests.post(url, files=files)

print(response.json())

4. 项目安装方式对比

| 安装方式 | 适用场景 | 优点 | 缺点 | |---------|----------|------|------| | 本地安装 | 开发测试环境 | 调试方便,依赖可控 | 环境配置复杂 | | Docker Compose | 生产环境 | 一键部署,隔离性好 | 需要Docker环境 | | 手动Docker构建 | 定制化需求 | 镜像可定制 | 构建过程复杂 |

建议开发测试使用本地安装,生产环境使用Docker Compose部署

【免费下载链接】X2Knowledge 是一个高效的开源知识提取器工具,专为企业知识库建设而设计,是RAG应用和企业知识管理的理想预处理工具。 【免费下载链接】X2Knowledge 项目地址: https://gitcode.com/leonda/X2Knowledge

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梅露焕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值