【亲测免费】 深度超图库(DHG):深度学习在图神经网络与超图神经网络中的应用指南

深度超图库(DHG):深度学习在图神经网络与超图神经网络中的应用指南

安装指南

目前,DHG的稳定版本是0.9.4,您可以使用以下命令通过pip轻松安装:

pip install dhg

若想体验包含最新特性的夜间构建版(0.9.5),可采用以下命令:

pip install git+https://github.com/iMoonLab/DeepHypergraph.git

请注意,夜间版本可能包含未经全面测试的最前沿方法和数据集,发现任何问题时,请在GitHub Issues上报告。

项目使用说明

DHG是一个基于PyTorch构建的深度学习库,专为图神经网络(GNN)和超图神经网络(HGNN)设计,支持从简单图结构到复杂的高阶信息传递。

快速入门

可视化展示

DHG提供强大的图形和超图可视化工具。以下是如何绘制不同类型的图结构的示例代码:

import matplotlib.pyplot as plt
import dhg

# 绘制一个随机图
g = dhg.random.graph_Gnm(10, 12)
g.draw()
plt.show()

# 绘制一个随机超图
hg = dhg.random.hypergraph_Gnm(10, 8)
hg.draw()
plt.show()
在低阶结构上的学习

以图结构为例,使用GCN的拉普拉斯矩阵平滑顶点特征:

import torch
import dhg
g = dhg.random.graph_Gnm(5, 8)
X = torch.rand(5, 2)
X_smoothed = g.smoothing_with_GCN(X)

API使用文档

DHG提供了丰富的API来支持谱基础和空间基础的操作。例如,在图结构上传递消息:

X_transferred = g.v2v(X, aggr="mean")  # 使用均值聚合进行消息传递

对于超图,可以这样处理顶点到超边的消息传递:

Y_intermediate = hg.v2e(X, aggr="mean")  # 顶点到超边
X_updated = hg.e2v(Y_intermediate, aggr="mean")  # 超边再到顶点

实现模型的例子

创建一个简单的GCN卷积层:

import torch.nn.functional as F
class GCNConv(torch.nn.Module):
    def __init__(self, input_dim, output_dim):
        super().__init__()
        self.linear = torch.nn.Linear(input_dim, output_dim)

    def forward(self, X, g: dhg.Graph):
        X = self.linear(X)
        X = g.smoothing_with_GCN(X)
        return F.relu(X)

这个简化的例子展示了如何利用DHG的功能结合PyTorch定义一个图卷积层。

DHG不仅简化了复杂结构的学习过程,还通过其丰富的API和模块化设计,使得研究人员能够高效地实验新的图和超图算法,同时也支持自动调参以优化模型性能。

确保查阅完整的官方文档来获取更详尽的信息和更多的实例,以及了解如何利用其独特的功能,如自动机器学习模块(基于Optuna)来提升您的模型训练和评估流程。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虞瑗喻Simone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值