machine-learning-visualized:直观展现机器学习算法的魅力

machine-learning-visualized:直观展现机器学习算法的魅力

在当今时代,机器学习技术已成为数据分析、人工智能领域的核心力量。然而,对于初学者来说,理解复杂的机器学习算法可能会感到困惑。今天,我要向大家推荐一个开源项目——machine-learning-visualized,它通过可视化的方式,让机器学习算法的学习变得直观易懂。

项目介绍

machine-learning-visualized 是一个基于 Jupyter Book 的开源项目,它包含了多个 Jupyter Notebooks,这些 Notebooks 不仅实现了从基本原理出发的机器学习算法,还进行了数学推导。通过交互式 Notebooks,用户可以直观地看到算法训练过程中权重如何影响损失函数。

项目技术分析

项目的核心是 Jupyter Book,这是一种可以将 Markdown 文件和 Jupyter Notebooks 构建成网站的工具。每个机器学习算法都有一个独立的代码仓库,而本仓库则是用于配置和构建 Jupyter Book 的代码。项目中的 SH 脚本可以自动从其他仓库下载相关的 Jupyter Notebooks,然后构建成一个完整的网站。

以下是项目的技术架构概览:

  • Jupyter Notebooks:实现了包括神经网络、逻辑回归、感知机、主成分分析、K 均值聚类和梯度下降等算法。
  • 交互式 Notebooks:使用 Marimo 工具构建,允许用户实时观察权重变化对损失函数的影响。
  • 数学推导:通过 LaTeX 表达式,详细展示算法的数学原理。

项目及技术应用场景

machine-learning-visualized 的应用场景非常广泛,以下是一些主要的应用领域:

  1. 教育:可以作为教学工具,帮助学生直观理解机器学习算法的运作机制。
  2. 研究:研究人员可以使用该项目进行算法的实验和验证,加速研究过程。
  3. 开发:工程师可以通过该项目快速掌握新算法,并将其应用到实际项目中。

项目特点

  1. 直观性:通过可视化,使得复杂的机器学习算法变得易于理解。
  2. 互动性:用户可以通过交互式 Notebooks 亲自调整参数,观察算法变化。
  3. 数学严谨性:项目中的数学推导保证了算法的正确性和严谨性。
  4. 易用性:提供了多种构建和运行 Jupyter Book 的方式,包括命令行工具、Docker Compose 和 Docker。

总结来说,machine-learning-visualized 是一个功能强大、易于使用的开源项目,它不仅可以帮助初学者快速入门机器学习,还可以为专业人士提供一个高效的算法学习和验证平台。如果你对机器学习感兴趣,不妨尝试使用这个项目,相信它会给你带来不一样的学习体验。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 在 Android 应用开发中,开发一款仿 OPPO 手机计算器的应用是极具实践价值的任务,它融合了 UI 设计、事件处理以及数学逻辑等多方面的技术要点。当前的“最新版仿 OPPO 手机计算器--android.rar”压缩包中,提供了该计算器应用的源代码,这为开发者深入学习 Android 编程提供了宝贵的资源。 UI 设计是构建此类计算器应用的基石。OPPO 手机的计算器界面以清晰的布局和良好的用户交互体验著称,其中包括数字键、运算符键以及用于显示结果的区域等关键元素。开发者需借助 Android Studio 中的 XML 布局文件来定义这些界面元素,可选用 LinearLayout、GridLayout 或 ConstraintLayout 等布局管理器,并搭配 Button 控件来实现各个按键功能。同时,还需考虑不同分辨率屏幕和设备尺寸的适配问题,这通常涉及 Density Independent Pixel(dp)单位的应用以及 Android 尺寸资源的合理配置。 事件处理构成了计算器的核心功能。开发者要在每个按钮的点击事件中编写相应的处理代码,通常通过实现 OnClickListener 接口来完成。例如,当用户点击数字键时,相应的值会被添加到显示区域;点击运算符键时,则会保存当前操作数并设定运算类型。而对于等号(=)按钮,需要执行计算操作,这往往需要借助栈数据结构来存储操作数和运算符,并运用算法解析表达式以完成计算。 数学逻辑的实现则是计算器功能的关键体现。在 Android 应用中,开发者可以利用 Java 内置的 Math 类,或者自行设计算法来完成计算任务。基本的加减乘除运算可通过简单的算术操作实现,而像求幂、开方等复杂运算则需调用 Math 类的相关方法。此外
D:\PyCharm\stock_predict_with_LSTM-master\venv\Scripts\python.exe D:/PyCharm/stock_predict_with_LSTM-master/main.py 2025-06-10 23:48:11.036396: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found 2025-06-10 23:48:11.036609: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. [ 2025/06/10 23:48:13 ] Config: 'add_train': False 'batch_size': 64 'continue_flag': '' 'cur_time': '2025_06_10_23_48_13' 'debug_mode': False 'debug_num': 500 'do_continue_train': False 'do_figure_save': False 'do_log_print_to_screen': True 'do_log_save_to_file': True 'do_predict': True 'do_train': True 'do_train_visualized': False 'dropout_rate': 0.2 'epoch': 20 'feature_columns': [2, 3, 4, 5, 6, 7, 8] 'figure_save_path': './figure/' 'hidden_size': 128 'input_size': 7 'label_columns': [4, 5] 'label_in_feature_index': [2, 3] 'learning_rate': 0.001 'log_save_path': './log/2025_06_10_23_48_13_tensorflow/' 'lstm_layers': 2 'model_name': 'model_tensorflow.h5' 'model_postfix': {'pytorch': '.pth' 'keras': '.h5' 'tensorflow': '.h5'} 'model_save_path': './checkpoint/tensorflow/' 'output_size': 2 'patience': 5 'predict_day': 1 'random_seed': 42 'shuffle_train_data': True 'time_step': 20 'train_data_path': './data/stock_data.csv' 'train_data_rate': 0.95 'use_cuda': False 'used_frame': 'tensorflow' 'valid_data_rate': 0.15 2025-06-10 23:48:13.116524: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'nvcuda.dll'; dlerror: nvcuda.dll not found 2025-06-10 23:48:13.116622: W tensorflow/stream_executor/cuda/cuda_driver.cc:263] failed call to cuInit: UNKNOWN ERROR (303) 2025-06-10 23:48:13.119797: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA diagnostic information for host: LAPTOP-VTR0417G 2025-06-10 23:48:13.119968: I tensorflow/stream_executor/cuda/cuda_diagnost
06-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

舒京涌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值