OpenPAI 数据管理完全指南:从存储配置到任务使用
前言
在OpenPAI深度学习平台中,高效的数据管理是机器学习工作流的关键环节。本文将全面介绍如何在OpenPAI平台中配置存储空间、上传数据以及在训练任务中使用这些数据的最佳实践。
存储空间基础配置
查看可用存储空间
在OpenPAI平台中,每个用户都需要获得授权的存储空间才能进行数据操作。查看个人存储权限的步骤如下:
- 登录OpenPAI平台
- 进入个人资料页面
- 在"存储配置"区域查看所有授权存储
如果此处显示为空列表,表明您尚未获得任何存储空间授权,需要联系集群管理员进行配置。
数据上传方法详解
OpenPAI支持多种存储类型,包括NFS、Azure Blob和Azure File等。下面详细介绍各类存储的数据上传方法。
NFS存储数据上传
Linux系统上传方案
对于Ubuntu 16.04及以上版本用户,推荐使用以下方法:
- 安装NFS客户端工具:
sudo apt-get update
sudo apt-get install --assume-yes nfs-common
- 创建本地挂载点并挂载NFS:
sudo mkdir -p /mnt/pai_nfs
sudo mount -t nfs4 nfs_server_address:/nfs_path /mnt/pai_nfs
- 将数据复制到挂载目录即可完成上传
Windows系统上传方案
Windows用户可以通过以下两种方式访问NFS:
-
Samba服务访问(推荐):
- 在文件资源管理器地址栏输入:
\\nfs_server_address
- 根据认证模式输入凭据:
- 基础认证:使用专用SMB账号(默认smbuser/smbpwd)
- AAD认证:使用域账号登录
- 在文件资源管理器地址栏输入:
-
NFS客户端挂载:
- 需要启用Windows NFS客户端功能
- 使用
mount
命令挂载NFS共享
Azure存储数据上传
对于Azure Blob和Azure File存储,推荐使用Azure Storage Explorer工具:
- 下载并安装Azure Storage Explorer
- 根据认证类型连接存储:
- AAD认证:直接使用账户权限访问
- 密钥认证:使用管理员提供的访问密钥
- 通过图形界面拖放上传数据
训练任务中的数据使用
在OpenPAI中提交训练任务时,可以通过两种方式使用存储中的数据。
可视化界面配置
在任务提交页面的"Data"部分:
- 从下拉列表选择需要的存储
- 系统会自动将存储挂载到容器内的默认路径(如
/mnt/confignfs
)
YAML配置文件配置
对于高级用户,可以在任务配置文件的extras.storages
部分精确控制存储挂载:
extras:
storages:
- name: training_data # 存储名称
mountPath: /data # 自定义挂载路径
- name: model_output # 第二个存储
配置说明:
name
:必须项,指定存储名称mountPath
:可选项,默认为/mnt/${name}
- 空列表会使用用户默认存储
最佳实践建议
-
大文件处理:
- 对于超过10GB的大文件,建议先压缩再上传
- 使用
rsync
替代cp
命令进行大文件传输
-
权限管理:
- NFS存储注意设置合理的文件权限
- Azure存储合理配置访问策略
-
性能优化:
- 高频访问的小文件建议使用本地SSD缓存
- 大规模数据集考虑使用Azure Blob的冷热分层存储
-
数据校验:
- 上传完成后务必进行md5校验
- 建议维护数据清单文件
常见问题排查
-
挂载失败:
- 检查网络连通性
- 确认存储服务器地址和路径正确
- 验证用户权限
-
上传速度慢:
- 检查网络带宽
- 对于Azure存储,选择同区域的存储账户
- 考虑使用多线程上传工具
-
权限问题:
- Linux下注意SELinux设置
- Windows下确认共享权限配置正确
通过本文介绍的方法,您应该能够在OpenPAI平台上高效地管理训练数据,为机器学习任务提供可靠的数据支持。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考