Flink CDC Connectors 核心概念:数据转换(Transform)详解

Flink CDC Connectors 核心概念:数据转换(Transform)详解

什么是数据转换(Transform)

在 Flink CDC Connectors 中,Transform 模块是一个强大的数据处理工具,它允许用户在数据同步过程中对数据进行灵活的处理和转换。这个模块主要提供三大核心功能:

  1. 列操作:可以删除或扩展数据表中的列
  2. 数据过滤:能够在同步过程中过滤掉不需要的数据
  3. 元数据处理:可以访问和利用数据变更事件中的元数据信息

Transform 的核心参数解析

Transform 模块通过一系列参数来定义转换规则,以下是主要参数的详细说明:

| 参数名称 | 功能描述 | 是否必填 | |---------------------------|--------------------------------------------------------------------------|----------| | source-table | 指定源表标识,支持正则表达式匹配多表 | 必填 | | projection | 投影规则,类似SQL中的SELECT子句,用于选择或重命名列 | 可选 | | filter | 过滤规则,类似SQL中的WHERE子句,用于筛选数据 | 可选 | | primary-keys | 指定目标表的主键,多个主键用逗号分隔 | 可选 | | partition-keys | 指定目标表的分区键,多个分区键用逗号分隔 | 可选 | | table-options | 用于配置自动创建表时的表选项 | 可选 | | converter-after-transform | 在转换后添加转换器来修改DataChangeEvent | 可选 | | description | 转换规则的描述信息 | 可选 |

特殊参数详解:converter-after-transform

converter-after-transform 是一个非常有用的参数,它可以在数据转换完成后对数据变更事件进行进一步处理。目前支持以下值:

  • SOFT_DELETE:将删除事件转换为插入事件,实现软删除功能

典型应用场景示例:

transform:
  - source-table: \.*.\.*
    projection: \*, __data_event_type__ AS op_type
    converter-after-transform: SOFT_DELETE

这个配置会将所有表的删除操作转换为插入操作,并在目标表中添加一个op_type列来标记原始操作类型。

元数据字段详解

Transform 模块提供了一些特殊的隐藏字段,用于访问数据变更事件的元数据信息:

| 字段名称 | 数据类型 | 描述 | |------------------------|----------|-------------------------------| | namespace_name | String | 包含该行的命名空间名称 | | schema_name | String | 包含该行的模式名称 | | table_name | String | 包含该行的表名称 | | data_event_type | String | 数据变更事件的操作类型 |

不同数据源的元数据关系

不同数据库系统对命名空间、模式和表的概念有所不同:

| 类型 | Namespace | SchemaName | Table | |----------------|-----------|------------|-------| | JDBC | Catalog | Schema | Table | | MySQL | Database | - | Table | | PostgreSQL | Database | Schema | Table | | Oracle | - | Schema | Table | | SQL Server | Database | Schema | Table | | StarRocks/Doris| Database | - | Table |

丰富的函数支持

Flink CDC Transform 模块基于 Calcite 解析表达式,使用 Janino 脚本评估函数调用,提供了丰富的函数库:

1. 比较函数

支持标准的比较操作符(=, <>, >, >=, <, <=)以及 BETWEEN、LIKE、IN 等高级比较操作。

2. 逻辑函数

提供 AND、OR、NOT 等逻辑运算符,以及 IS TRUE、IS FALSE 等逻辑判断。

3. 算术函数

支持基本四则运算(+,-,*,/,%),以及 ABS、CEIL、FLOOR、ROUND 等数学函数,还能生成 UUID。

4. 字符串函数

提供字符串连接(||)、大小写转换(UPPER/LOWER)、子串提取(SUBSTR)、正则替换(REGEXP_REPLACE)等操作。

5. 时间函数

丰富的日期时间处理能力,包括:

  • 获取当前时间(LOCALTIME, CURRENT_TIMESTAMP)
  • 时间格式化(DATE_FORMAT)
  • 时间加减(TIMESTAMPADD)
  • 时间差计算(TIMESTAMPDIFF)
  • Unix时间戳转换(FROM_UNIXTIME/UNIX_TIMESTAMP)

6. 条件函数

支持 CASE WHEN 条件表达式,实现复杂的分支逻辑。

实际应用示例

示例1:添加元数据信息

transform:
  - source-table: testdb.customer
    projection: \*, __namespace_name__ || '.' || __schema_name__ || '.' || __table_name__ AS identifier_name, 
                __data_event_type__ AS type, op_ts AS opts

这个转换规则会保留所有原始列,并添加三个新列:

  1. identifier_name:组合命名空间、模式和表名的完整标识符
  2. type:操作类型
  3. opts:操作时间戳

示例2:条件过滤

transform:
  - source-table: inventory.products
    filter: price > 100 AND category IN ('electronics', 'appliances')
    projection: id, name, price, category

这个转换规则会:

  1. 只同步价格大于100且类别为电子产品或家用电器的商品
  2. 只选择id、name、price和category四个字段

最佳实践建议

  1. 合理使用投影:只选择需要的列,减少数据传输量
  2. 善用过滤条件:在源头过滤掉不需要的数据,提高处理效率
  3. 利用元数据:通过元数据字段实现更灵活的数据处理逻辑
  4. 注意性能影响:复杂的转换规则可能会影响同步性能,需进行测试
  5. 保持一致性:确保转换后的数据仍能满足业务一致性和完整性要求

通过灵活运用 Flink CDC 的 Transform 功能,可以实现高度定制化的数据同步流程,满足各种复杂的数据集成需求。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卫颂耀Armed

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值