PaddleX单模型Python API使用指南:从入门到精通
前言
PaddleX作为飞桨生态下的全流程开发工具,提供了简洁高效的模型推理API。本文将详细介绍如何使用PaddleX的Python API进行单模型推理,帮助开发者快速上手并应用于实际项目中。
一、快速开始:图像分类示例
让我们从一个简单的图像分类示例开始,直观感受PaddleX API的便捷性:
from paddlex import create_model
# 1. 创建模型实例
model = create_model(model_name="PP-LCNet_x1_0")
# 2. 执行预测
output = model.predict("demo_image.jpg", batch_size=1)
# 3. 处理结果
for res in output:
res.print(json_format=False) # 打印结果
res.save_to_img("./output/") # 保存可视化图片
res.save_to_json("./output/res.json") # 保存JSON格式结果
整个过程只需三步:创建模型、执行预测、处理结果,体现了PaddleX API设计的简洁性。
二、核心API详解
1. 模型创建:create_model()
create_model
是模型推理的入口函数,负责加载和初始化模型。
关键参数说明:
model_name
:支持两种形式- 预训练模型名称(如"PP-LCNet_x1_0")
- 本地模型路径(如"/path/to/model_infer/")
model_dir
:当使用本地模型时指定路径batch_size
:推理批大小,影响内存占用和推理速度device
:指定计算设备- "cpu":使用CPU推理
- "gpu:0":使用第0号GPU
- 也支持NPU、XPU等异构设备
典型用法:
# 使用预训练模型
model = create_model(model_name="ResNet50_vd")
# 使用本地模型
model = create_model(model_dir="./saved_model/")
2. 预测执行:predict()
predict
方法支持多种输入形式,灵活应对不同场景。
输入类型支持:
- 单文件路径(字符串)
- 包含多个文件的目录路径
- 网络图片URL
- numpy数组(CV模型)
- pandas DataFrame(时序模型)
- 上述类型的列表组合
输出处理: 返回生成器对象,可通过迭代逐条获取预测结果,内存效率高。
使用示例:
# 单张图片预测
output = model.predict("image.jpg")
# 批量预测目录下所有图片
output = model.predict("./image_dir/")
# 处理网络图片
output = model.predict("http://example.com/image.jpg")
三、结果处理与可视化
PaddleX提供了丰富的结果处理方式,满足不同需求。
1. 结果属性访问
result = next(output) # 获取单个结果
# 获取不同格式的结果
str_result = str(result) # 字符串表示
json_result = result.json # JSON字典格式
img_result = result.img # PIL.Image对象(可视化结果)
2. 结果输出方法
# 打印结果(支持JSON格式化)
result.print(json_format=True, indent=2)
# 保存为JSON文件
result.save_to_json("result.json")
# 保存可视化图片
result.save_to_img("vis_result.jpg")
# 其他格式保存(根据模型类型支持)
result.save_to_csv("result.csv")
result.save_to_html("result.html")
四、高级配置:推理后端优化
PaddleX通过PaddlePredictorOption
提供细粒度的推理配置。
1. 设备与后端配置
from paddlex import PaddlePredictorOption
# 创建配置对象
option = PaddlePredictorOption()
# 设置GPU设备
option.device = "gpu:0"
# 设置TensorRT加速
option.run_mode = "trt_fp16"
# 查看支持的后端配置
print(option.get_support_run_mode())
2. CPU优化配置
# 启用MKLDNN加速
option.run_mode = "mkldnn"
# 设置CPU线程数
option.cpu_threads = 4
五、最佳实践建议
- 批处理优化:适当增大
batch_size
可提升吞吐量,但需注意内存限制 - 设备选择:GPU推理通常比CPU快10倍以上,优先考虑使用GPU
- 后端选择:
- 生产环境推荐使用TensorRT(trt_fp16/trt_int8)
- CPU环境可使用MKLDNN加速
- 结果处理:对于大批量预测,建议使用生成器逐条处理,避免内存溢出
六、常见问题解答
Q:如何知道模型支持哪些结果输出格式?
A:可通过dir(result)
查看对象属性,或查阅具体模型文档。一般来说:
- 分类模型支持img/json
- 检测模型额外支持可视化图片
- 时序模型支持csv/xlsx
Q:推理时出现内存不足怎么办? A:可尝试:
- 减小
batch_size
- 使用更小的模型
- 启用
trt_int8
量化减少显存占用
Q:如何在不同设备间切换?
A:只需修改device
参数即可,代码无需其他改动:
# CPU推理
model = create_model(..., device="cpu")
# 切换回GPU
model = create_model(..., device="gpu:0")
结语
通过本文,您应该已经掌握了PaddleX单模型Python API的核心使用方法。PaddleX通过简洁的API设计,让模型推理变得异常简单,同时又不失灵活性。建议读者结合实际项目需求,尝试不同的配置组合,找到最适合自己应用场景的推理方案。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考