Transformers.js 使用教程

Transformers.js 使用教程

项目介绍

Transformers.js 是一个基于 JavaScript 的开源库,旨在让开发者能够在浏览器中运行预训练的机器学习模型。这个项目由 Hugging Face 提供支持,使得前端开发者能够轻松地集成和使用各种先进的自然语言处理(NLP)模型。

项目快速启动

安装

首先,你需要通过 npm 安装 Transformers.js:

npm install @xenova/transformers

基本使用

以下是一个简单的示例,展示如何在 JavaScript 中使用 Transformers.js 进行情感分析:

import { pipeline } from '@xenova/transformers';

async function main() {
  // 创建一个情感分析管道
  let pipe = await pipeline('sentiment-analysis');
  
  // 进行情感分析
  let out = await pipe('I love transformers!');
  console.log(out); // 输出: [{'label': 'POSITIVE', 'score': 0.999817686}]
}

main();

应用案例和最佳实践

文本生成

使用 distilgpt2 模型进行文本生成:

let pipe = await pipeline('text-generation', 'distilgpt2');
let out = await pipe('Once upon a time');
console.log(out); // 输出生成的文本

问答系统

使用 distilbert-base-uncased-distilled-squad 模型进行问答:

let pipe = await pipeline('question-answering', 'distilbert-base-uncased-distilled-squad');
let out = await pipe({
  question: 'What is the capital of France?',
  context: 'Paris is the capital of France.'
});
console.log(out); // 输出答案

典型生态项目

Hugging Face 模型库

Transformers.js 可以与 Hugging Face 的模型库无缝集成,提供了大量的预训练模型供开发者使用。你可以在 Hugging Face 模型库 中找到各种任务的模型。

Gradio

Gradio 是一个用于快速创建和共享机器学习模型界面的库。结合 Transformers.js 和 Gradio,你可以快速构建一个交互式的 Web 应用来展示你的模型。

import gradio as gr
from transformers import pipeline

pipe = pipeline('sentiment-analysis')

def predict(text):
    return pipe(text)

iface = gr.Interface(fn=predict, inputs="text", outputs="label")
iface.launch()

通过这些工具和库的结合,你可以轻松地构建和部署基于 Transformers.js 的应用程序。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓艾滢Kingsley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值