Dive-into-DL-PyTorch项目解析:梯度下降与随机梯度下降原理详解

Dive-into-DL-PyTorch项目解析:梯度下降与随机梯度下降原理详解

引言

在深度学习模型训练过程中,优化算法扮演着至关重要的角色。Dive-into-DL-PyTorch项目中详细介绍了两种基础但核心的优化方法:梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)。本文将深入解析这两种算法的数学原理、实现细节以及实际应用中的注意事项。

梯度下降基本原理

一维情况下的直观理解

梯度下降的核心思想非常简单:沿着函数梯度的反方向调整参数,以逐步减小函数值。以一维函数为例:

假设我们有一个连续可导的函数f(x),根据泰勒展开公式,对于足够小的ε,我们有: $$f(x + \epsilon) \approx f(x) + \epsilon f'(x)$$

如果我们选择ε = -ηf'(x),其中η是一个小的正数(称为学习率),那么: $$f(x - ηf'(x)) ≈ f(x) - η[f'(x)]²$$

由于[f'(x)]²总是非负的,这意味着只要我们选择合适的学习率η,函数值f(x)就会随着迭代不断减小。

学习率的选择艺术

学习率η是梯度下降中最重要的超参数之一,它直接影响着优化过程的成败:

  1. 学习率过小:收敛速度缓慢,需要大量迭代才能达到最优解
  2. 学习率过大:可能导致参数在最优解附近震荡甚至发散

通过x²函数的例子可以直观看到:

  • η=0.2时,10次迭代后x≈0.06,接近最优解0
  • η=0.05时,10次迭代后x≈3.49,离最优解仍有距离
  • η=1.1时,参数值发散,完全无法收敛

多维梯度下降

在实际的深度学习模型中,我们通常需要优化多维参数。多维梯度下降是一维情况的自然推广:

对于目标函数f(𝐱),其中𝐱是一个d维向量,梯度∇f(𝐱)是一个由各维度偏导数组成的向量。参数更新规则为: $$𝐱 ← 𝐱 - η∇f(𝐱)$$

方向导数与最速下降

在多维情况下,梯度方向有一个重要性质:负梯度方向是函数值下降最快的方向。这可以通过方向导数的概念来理解:

函数f在𝐱处沿单位向量𝐮的方向导数为: $$D_𝐮f(𝐱) = ∇f(𝐱)·𝐮 = ||∇f(𝐱)||·cosθ$$

当θ=π(即𝐮与∇f(𝐱)方向相反)时,方向导数最小,函数值下降最快。

随机梯度下降(SGD)

动机与原理

在深度学习中,目标函数通常是训练集上所有样本损失的平均: $$f(𝐱) = (1/n)∑_{i=1}^n f_i(𝐱)$$

传统梯度下降需要计算所有样本的梯度,计算复杂度为O(n),当n很大时(深度学习常见情况),这会非常耗时。

随机梯度下降的核心思想是:每次迭代随机选取一个样本,计算其梯度作为整体梯度的估计: $$𝐱 ← 𝐱 - η∇f_i(𝐱)$$

优势与特性

  1. 计算效率:每次迭代的计算复杂度从O(n)降到O(1)
  2. 无偏估计:E[∇f_i(𝐱)] = ∇f(𝐱),随机梯度是真实梯度的无偏估计
  3. 引入噪声:随机性可以帮助逃离局部极小值,有时有利于找到更好的解

通过二维示例f(x1,x2)=x1²+2x2²可以看到,相比梯度下降的平滑收敛路径,SGD的路径更加曲折,这是由梯度的随机估计引入的噪声导致的。

实际应用建议

  1. 学习率调整:实践中常使用学习率衰减策略,随着迭代逐步减小学习率
  2. 批量梯度下降:折中方案是使用小批量(mini-batch)样本计算梯度,平衡计算效率和稳定性
  3. 动量方法:可以结合动量(momentum)来加速收敛并减少震荡
  4. 自适应方法:Adam等自适应学习率算法通常表现更好

总结

梯度下降和随机梯度下降是深度学习优化的基础。理解它们的数学原理和特性对于掌握更复杂的优化算法至关重要。虽然在实际应用中我们更多使用其改进版本,但这些基础算法的核心思想贯穿于各种现代优化方法之中。

通过Dive-into-DL-PyTorch项目中的代码示例,我们可以直观地观察这些算法的行为特征,这对于深入理解优化过程非常有帮助。建议读者动手实践这些示例,调整不同参数观察算法的表现差异。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 无锡平芯微半导体科技有限公司生产的A1SHB三极管(全称PW2301A)是一款P沟道增强型MOSFET,具备低内阻、高重复雪崩耐受能力以及高效电源切换设计等优势。其技术规格如下:最大漏源电压(VDS)为-20V,最大连续漏极电流(ID)为-3A,可在此条件下稳定工作;栅源电压(VGS)最大值为±12V,能承受正反向电压;脉冲漏极电流(IDM)可达-10A,适合处理短暂高电流脉冲;最大功率耗散(PD)为1W,可防止器件过热。A1SHB采用3引脚SOT23-3封装,小型化设计利于空间受限的应用场景。热特性方面,结到环境的热阻(RθJA)为125℃/W,即每增加1W功率损耗,结温上升125℃,提示设计电路时需考虑散热。 A1SHB的电气性能出色,开关特性优异。开关测试电路及波形图(图1、图2)展示了不同条件下的开关性能,包括开关上升时间(tr)、下降时间(tf)、开启时间(ton)和关闭时间(toff),这些参数对评估MOSFET在高频开关应用中的效率至关重要。图4呈现了漏极电流(ID)漏源电压(VDS)的关系,图5描绘了输出特性曲线,反映不同栅源电压下漏极电流的变化。图6至图10进一步揭示性能特征:转移特性(图7)显示栅极电压(Vgs)对漏极电流的影响;漏源开态电阻(RDS(ON))随Vgs变化的曲线(图8、图9)展现不同控制电压下的阻抗;图10可能涉及电容特性,对开关操作的响应速度和稳定性有重要影响。 A1SHB三极管(PW2301A)是高性能P沟道MOSFET,适用于低内阻、高效率电源切换及其他多种应用。用户在设计电路时,需充分考虑其电气参数、封装尺寸及热管理,以确保器件的可靠性和长期稳定性。无锡平芯微半导体科技有限公司提供的技术支持和代理商服务,可为用户在产品选型和应用过程中提供有
资源下载链接为: https://pan.quark.cn/s/9648a1f24758 在 JavaScript 中实现点击展开隐藏效果是一种非常实用的交互设计,它能够有效提升用户界面的动态性和用户体验。本文将详细阐述如何通过 JavaScript 实现这种功能,并提供一个完整的代码示例。为了实现这一功能,我们需要掌握基础的 HTML 和 CSS 知识,以便构建基本的页面结构和样式。 在这个示例中,我们有一个按钮和一个提示框(prompt)。默认情况下,提示框是隐藏的。当用户点击按钮时,提示框会显示出来;再次点击按钮时,提示框则会隐藏。以下是 HTML 部分的代码: 接下来是 CSS 部分。我们通过设置提示框的 display 属性为 none 来实现默认隐藏的效果: 最后,我们使用 JavaScript 来处理点击事件。我们利用事件监听机制,监听按钮的点击事件,并通过动态改变提示框的 display 属性来实现展开和隐藏的效果。以下是 JavaScript 部分的代码: 为了进一步增强用户体验,我们还添加了一个关闭按钮(closePrompt),用户可以通过点击该按钮来关闭提示框。以下是关闭按钮的 JavaScript 实现: 通过以上代码,我们就完成了点击展开隐藏效果的实现。这个简单的交互可以通过添加 CSS 动画效果(如渐显渐隐等)来进一步提升用户体验。此外,这个基本原理还可以扩展到其他类似的交互场景,例如折叠面板、下拉菜单等。 总结来说,JavaScript 实现点击展开隐藏效果主要涉及 HTML 元素的布局、CSS 的样式控制以及 JavaScript 的事件处理。通过监听点击事件并动态改变元素的样式,可以实现丰富的交互功能。在实际开发中,可以结合现代前端框架(如 React 或 Vue 等),将这些交互封装成组件,从而提高代码的复用性和维护性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邹澜鹤Gardener

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值