【机器学习中的数学基础】(4)——笔记

一、随机变量与概率分布

随机变量和概率分布是概率论和统计学中的核心概念,用于描述随机现象和不确定性。

随机变量

基本概念
  • 随机变量:一种取值不确定的变量,它的取值由随机试验的结果决定。
    • 离散随机变量:取值为有限个或可数无限个,如掷骰子的结果(1到6)。
    • 连续随机变量:取值为连续区间内的无穷多个值,如某人的身高(可以是任意实数)。
直观解释
  • 想象你在玩一个游戏,掷骰子的结果是不确定的,这就是一个离散随机变量。
  • 如果你测量每天的温度,温度的具体值也是不确定的,这就是一个连续随机变量。
概率分布
基本概念
  • 概率分布:描述随机变量的所有可能取值以及每个取值的概率。
    • 概率质量函数(PMF):用于离散随机变量,描述每个取值的概率。
    • 概率密度函数(PDF):用于连续随机变量,描述取某个值的相对可能性。
    • 累积分布函数(CDF):描述随机变量取值小于或等于某个特定值的概率,适用于离散和连续随机变量。
直观解释
  • 对于离散随机变量,概率分布就像一个清单,列出了每个可能的结果及其概率。例如,掷骰子得到1到6的概率都是1/6。
  • 对于连续随机变量,概率分布是一个光滑的曲线,表示每个值的相对可能性。例如,某人身高的概率密度函数可能是一条钟形曲线(正态分布)。

常见的概率分布

离散概率分布
  • 二项分布

    • 描述在 nnn 次独立重复试验中,成功次数的分布,每次试验成功的概率为 ppp。
    • 例如,抛10次硬币,每次正面朝上的概率为0.5,计算正面朝上次数的分布。
  • 泊松分布

    • 描述在固定时间或空间内,某事件发生次数的分布。
    • 例如,某电话客服中心每小时接到的电话数。
连续概率分布
  • 正态分布(高斯分布)

    • 描述自然界中许多现象的分布,其密度函数是对称的钟形曲线。
    • 例如,人的身高、考试成绩。
  • 均匀分布

    • 描述在一个区间内每个值都有相同概率的分布。
    • 例如,生成一个范围在0到1之间的随机数。

应用
  • 统计推断

    • 随机变量和概率分布用于估计总体参数、检验假设和进行预测。
  • 风险分析

    • 在金融和保险领域,通过概率分布分析风险和不确定性。
  • 质量控制

    • 在制造业,通过概率分布监控产品质量,确保生产过程的稳定性。
  • 机器学习

    • 概率分布用于模型的概率预测和参数估计,如贝叶斯方法、最大似然估计等。

总结

  • 随机变量:描述随机现象的变量,可以是离散的或连续的。
  • 概率分布:描述随机变量的可能取值及其概率,包括离散的概率质量函数(PMF)和连续的概率密度函数(PDF)。
  • 常见分布:离散分布如二项分布、泊松分布,连续分布如正态分布、均匀分布。
  • 应用广泛:统计推断、风险分析、质量控制和机器学习等领域。

二、贝叶斯定理

贝叶斯定理是概率论中的一个重要法则,用于更新事件发生的概率,基于新获得的信息。它在许多领域都有广泛的应用,包括统计学、机器学习、医学诊断等。

通俗解释

  1. 基本概念

    • 贝叶斯定理描述了如何根据新证据来更新先验概率,得到后验概率。
    • 先验概率:在获得新证据之前,关于事件的初始估计。
    • 后验概率:在获得新证据之后,关于事件的更新估计。
  2. 直观类比

    • 想象你是一名侦探,你正在调查一个案件,初始的嫌疑人是三个人,你对每个人是否是罪犯都有一个初步的猜测(先验概率)。后来,你找到了新的证据(如指纹),你根据这个新证据重新评估每个嫌疑人的嫌疑程度(后验概率)。

应用
  • 医学诊断

    • 评估疾病的可能性,基于检测结果和已知的疾病流行率。
  • 机器学习

    • 贝叶斯分类器、贝叶斯网络等模型,用于分类和预测任务。
  • 金融领域

    • 评估投资风险和回报,根据新市场信息调整投资策略。
  • 自然语言处理

    • 词语预测和拼写校正,根据上下文信息调整词语的概率。
  • 决策分析

    • 在不确定性条件下,进行合理的决策,基于新信息不断更新决策模型。

总结

  • 贝叶斯定理:用于根据新证据更新事件的概率。
  • 先验概率:初始估计的概率。
  • 后验概率:根据新证据更新后的概率。
  • 广泛应用:医学诊断、机器学习、金融分析、自然语言处理和决策分析等领域。

理解贝叶斯定理可以帮助我们在不确定性条件下做出更好的决策,并且在各种实际问题中提供有力的概率分析工具。

三、期望 方差 条件数学期望

期望、方差和条件数学期望是概率论和统计学中的基本概念,用于描述随机变量的分布特性。

期望(数学期望)

基本概念
  • 期望(数学期望、均值):随机变量的所有可能值按照其概率加权平均的结果,表示随机变量的平均取值。
直观解释
  • 想象你在掷一个均匀的六面骰子,期望值是每次掷骰子的平均结果。虽然你每次掷出的结果都是整数(1到6),但如果你掷很多次,结果的平均值会趋近于某个值(3.5)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值