自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 【大作业-12】草莓成熟度检测模型,YOLO+PyQt+MySQL

本文介绍了一个基于YOLO系列模型的草莓成熟度检测系统,结合PyQt界面和MySQL数据库实现。系统对比测试了YOLOv5s、YOLOv8s、YOLO11s、YOLO12s和RT-DETR五种模型,其中RT-DETR表现最优但速度较慢,YOLOv8s在精度和速度上取得平衡。系统功能包括用户登录注册、图片/视频/摄像头流检测,支持调整置信度等参数。文章详细说明了数据集配置、Python环境搭建和MySQL数据库设置方法,相关资源可通过B站获取。项目为草莓成熟度检测提供了实用的解决方案。

2025-08-05 15:35:01 660

原创 【大作业-11】PCB缺陷检测模型,YOLO+PyQt+MySQL

本文介绍了一个基于YOLO系列模型的PCB缺陷检测系统,整合了PyQt界面和MySQL数据库。通过对YOLOv5s、YOLOv8s、YOLO11s、YOLO12s和RT-DETR五个模型的对比实验,发现RT-DETR在mAP指标上表现最优(0.951),但YOLOv8s在精度与速度平衡性上更佳。系统提供登录注册、图片/视频/摄像头检测功能,采用6类PCB缺陷数据集,要求配置Python深度学习环境和MySQL数据库。项目资源可通过B站获取,包含完整的代码、数据集和配置说明。

2025-08-01 18:24:47 1071

原创 【大作业-1】行人目标检测模型,YOLO+PyQt+MySQL

本文介绍了一个基于YOLO系列模型的行人目标检测系统,结合PyQt5界面和MySQL数据库开发。系统通过对比实验(YOLOv5s/v8s/v11s)选择最优模型,并在表现最佳的YOLOv8s基础上加入SE注意力机制和改进损失函数(WIOU)。项目包含登录注册、图片/视频/摄像头检测功能模块,提供完整的运行环境配置指南(数据集、Python依赖、MySQL数据库)。实验结果显示优化后的YOLOv8s+WIOU+SE模型达到最佳性能(mAP:0.781)。所有资源可通过B站链接获取,包含训练代码、界面设计和数据

2025-07-26 00:07:17 728

原创 【大作业-10】口罩识别检测模型,YOLO+PyQt+MySQL

本文介绍了基于YOLO系列模型的口罩检测系统,采用YOLOv5s/YOLOv8s/YOLO11s/YOLO12s四种模型进行对比实验,其中YOLO11s表现最优(mAP0.949)。系统通过PyQt实现可视化界面,包含登录注册(MySQL数据库支持)、图片/视频/摄像头检测等功能模块,支持置信度调节和结果保存。项目提供完整代码及数据集资源,需配置Python深度学习环境(PyTorch等)和MySQL数据库。详细教程和资源可通过B站视频获取。

2025-07-24 18:59:18 727

原创 【大作业-2】车辆目标检测,YOLO+PyQt+MySQL

本文介绍了一个基于YOLO系列的车辆目标检测系统,整合了PyQt界面和MySQL数据库。通过对YOLOv5s、v8s、v11s和v12s四个模型进行对比实验,最终选择性能最优的YOLO12s模型进行改进,增加了SE注意力机制和WIOU损失函数优化。系统提供用户登录注册、图片/视频/摄像头流检测功能,包含五次模型选择、参数设置和结果保存选项。文中详细展示了实验数据、界面设计、训练结果及资源获取方式,并说明了数据集来源和环境配置要求。项目完整代码和资料可通过B站获取。

2025-07-22 22:35:35 545

原创 【大作业-9】安全帽目标检测,YOLO+PyQt+MySQL

本文介绍了一个基于YOLO系列模型的安全帽目标检测系统,整合了PyQt界面和MySQL数据库。系统实现了登录注册、图片/视频/摄像头检测功能,并对比测试了YOLOv5s、v8s、11s、12s四个模型,最终在YOLO12s基础上加入SE注意力机制和WIOU损失函数进行优化。项目包含完整的训练结果展示、环境配置指南和数据库设置说明,所有资源可通过B站获取。该系统将深度学习模型与可视化界面结合,为安全帽检测提供了完整的解决方案。

2025-07-21 14:53:40 609

原创 【大作业-3】行人追踪计数检测模型,YOLO+PyQt+MySQL+DeepSORT

本文介绍了一个基于YOLO系列模型的行人追踪计数检测系统,整合了PyQt界面、MySQL数据库和DeepSORT追踪技术。通过对比YOLOv5s、v8s和v11s模型,选定性能最优的YOLOv8s进行改进,加入SE注意力机制和WIOU损失函数,使mAP提升至0.781。系统实现了登录注册、图片/视频/摄像头检测功能,利用DeepSORT实现行人进出计数。项目使用WiderPerson数据集,需配置PyTorch等深度学习环境和MySQL数据库。完整代码和资源可通过B站视频链接获取。

2025-07-20 17:22:42 562

原创 【大作业-4】抽烟目标检测,YOLO+PyQt+MySQL

本文介绍了一个基于YOLO11+PyQt+MySQL的抽烟目标检测系统。通过对比YOLOv5s、YOLOv8s、YOLO11s和YOLO12s四个模型的实验数据,结果显示YOLO11s性能最优。在此基础上,通过加入SE注意力机制和修改损失函数,进一步提升了模型表现(mAP提升至0.828)。系统采用PyQt开发了包含登录注册功能的交互界面,并集成MySQL数据库管理用户信息。论文详细展示了项目的数据集、环境配置、训练结果和操作流程,相关资源可通过B站获取。该项目实现了图片、视频、摄像头等多种场景下的抽烟行为

2025-07-19 12:43:56 920

原创 【大作业-5】火灾目标检测,YOLO+PyQt+MySQL

本文介绍了一个基于YOLO+PyQt+MySQL的火灾目标检测系统。系统包含登录注册界面、多种检测功能(图片/视频/摄像头流),并通过四次对比实验(YOLOv5s/v8s/v11s/v12s)确定最优模型。在表现最佳的YOLO11s基础上,进一步优化加入SE注意力机制和WIOU损失函数改进。项目展示了完整的训练结果、检测界面设计,并详细说明了环境配置要求(Python深度学习环境、MySQL数据库安装)和数据集来源。相关资源可通过B站视频获取。

2025-07-18 16:28:30 1053

原创 【大作业-6】钢材表面缺陷检测,YOLO+PyQt+MySQL

本文介绍了一个基于YOLO系列模型、PyQt和MySQL的钢材表面缺陷检测系统。项目通过对比YOLOv5s、v8s、11s、12s四个模型的性能(PR、mAP等指标),确定YOLO11s表现最佳。系统包含PyQt设计的登录/检测界面,支持图片/视频/摄像头检测,使用MySQL存储用户数据。文章详细说明了数据集来源(NEU-DET钢材数据集)、Python环境配置(PyTorch等依赖)和MySQL数据库设置方法,并提供了相关资源获取途径。该项目实现了从模型训练到应用部署的完整流程。

2025-07-16 17:15:46 960

原创 【大作业-8】交通标识检测模型,YOLO+PyQt+MySQL

摘要:本文介绍了一个基于YOLO系列模型的交通标志检测系统,结合PyQt界面和MySQL数据库。系统实现了登录注册、图片/视频/摄像头检测功能,并对YOLOv5s、v8s、11s、12s四个模型进行了对比实验,结果显示YOLOv8s表现最优(mAP50-95达0.788)。项目包含完整的检测界面设计、训练结果展示(F1曲线、PR曲线等)和数据库配置说明。需要安装PyTorch、MySQL等环境,数据集采用CCTSDB交通标识数据集。详细资源和代码可通过B站视频获取。

2025-07-15 00:12:59 842

原创 【大作业-7】手势识别检测模型,YOLO+PyQt+MySQL

手势识别检测模型,YOLO+PyQt+MySQL,四次对比实验、PyQt与MySQL结合的登陆界面,PyQt与YOLO结合的检测界面,可推理图像、视频和摄像头。

2025-07-13 18:50:25 1119

原创 安装深度学习PyTorch的教程

本文介绍了深度学习PyTorch环境搭建的基础环境配置方法。主要内容包括:1)Anaconda下载安装指南,区分不同操作系统(Windows/Linux/MacOS)和处理器架构的安装包选择;2)配置清华镜像源加速下载,详细说明.condarc文件设置方法;3)常用conda命令操作,如创建虚拟环境(python=3.8)、激活环境、安装特定版本的PyTorch和Torchvision,并针对有无NVIDIA显卡提供不同安装指令,通过本指南可快速搭建PyTorch开发环境。

2025-06-09 21:42:18 963

原创 yolo系列模型数据集处理过程

YOLO系列目标检测模型在实验中常缺乏规范的测试集划分,许多实验数据仅基于验证集。为此,本文提供了两个关键代码:首先,将XML格式的标注文件转换为YOLO所需的TXT格式;其次,将图像和TXT文件按比例划分为训练集、验证集和测试集。代码中需自定义类名、文件路径和数据集比例。此外,还介绍了数据集YAML文件的配置方法及训练和验证命令,确保实验的规范性和结果的准确性。

2025-05-22 22:43:53 460

原创 Anaconda下载和使用教程 | conda配置、命令 | pip配置、命令

是一个用于python/R科学计算和机器学习的开源工具,支持 Linux, macOS, Windows, 包含了conda等众多工具包及其依赖项,提供了包管理与环境管理的功能,可以很方便地: Jupyter 是一个交互式的计算环境,支持多种编程语言,但在 Anaconda 中主要用于 Python。它允许用户创建和共享包含实时代码、方程式、可视化和叙述文本的文档。:使用便捷,管理方便,电脑有条理,分割环境,

2025-05-21 17:41:40 837 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除