一. apply_async基础
在Python中,apply_async()
函数是multiprocessing
模块的一部分,它用于异步执行函数。这个函数允许你在一个进程池中的多个进程上异步地运行函数,而不需要等待前面的函数完成。
下面是apply_async()
函数的基本语法:
apply_async(func, args=(), kwds={}, callback=None)
参数说明:
func
:要执行的函数。args
:传递给函数的参数。kwds
:传递给函数的键值对参数。callback
:当函数执行完成后调用的回调函数。
下面是一个简单的示例,展示如何使用apply_async()
函数:
from multiprocessing import Pool
def square(n):
return n ** 2
if __name__ == '__main__':
with Pool() as pool:
result = pool.apply_async(square, args=(10,))
print(result.get()) # 输出:100,注意, 这里可以用get来获取执行后的输出
在上面的示例中,我们定义了一个简单的函数square()
,它接受一个整数作为参数并返回该整数的平方。然后,我们使用multiprocessing.Pool()
创建一个进程池,并使用apply_async()
函数异步执行square()
函数。我们将参数(10,)
传递给square()
函数。最后,我们使用get()
方法获取结果并打印出来。
请注意,apply_async()
函数返回一个AsyncResult
对象,可以使用该对象来获取函数的执行结果或等待函数的完成。
二.进阶使用
主进程开始运行,碰到子进程后,主进程说:让我先运行个够,等到操作系统进行进程切换的时候,再交给子进程运行。因为我们的程序太短,还没等到操作系统进行进程切换,主进程就运行完毕了。
python官方建议:废弃apply,使用apply_async
下面是进阶用法,该实例中增加了对cpu核心占用数的控制和结果的回调
import multiprocessing
import time
import random
import sys
#测试回调
def mul(a, b):
time.sleep(0.5*random.random())
return a * b
def pow3(x):
return x ** 3
if __name__ == '__main__':
multiprocessing.freeze_support() # 在Windows下编译需要加这行
PROCESSES = 4 #设置多进程的占用核心数量
print('Creating pool with %d processes\n' % PROCESSES)
pool = multiprocessing.Pool(PROCESSES)
A = []
B = [56, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
r = pool.apply_async(mul, (7, 8), callback=A.append)
r.wait()
print(A)
print(B)
r = pool.map_async(pow3, range(10), callback=A.extend)
r.wait()
print(A)
print(B)
if A == B:
print('\tcallbacks succeeded\n')
else:
print('\t*** callbacks failed\n\t\t%s != %s\n' % (A, B))
运行结果:
Creating pool with 4 processes
[56]
[56, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
[56, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
[56, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
callbacks succeeded