线性方程组

本文介绍了线性方程组的解向量概念,指出解的线性组合仍然是方程组的解。同时阐述了基础解集的定义,即齐次线性方程组解集的最大无关组,并讨论了非齐次线性方程组的解与齐次方程组的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

解向量

  设有齐次线性方程组 { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 ⋯    ⋯    ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = 0 \left\{\begin{matrix} a_{11} x_{1} + a_{12} x_{2} + \cdots + a_{1n} x_{n} = 0 \\ a_{21} x_{1} + a_{22} x_{2} + \cdots + a_{2n} x_{n} = 0 \\ \cdots \; \cdots \; \cdots \\ a_{m1} x_{1} + a_{m2} x_{2} + \cdots + a_{mn} x_{n} = 0 \end{matrix}\right. a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0am1x1+am2x2++amnxn=0,记 A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ) \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} A=a11a21am1a12a22am2a1na2namn x = ( x 1 x 2 ⋮ x n ) \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} x=x1x2xn,则可以写成向量方程 A x = 0 \mathbf{Ax} = \mathbf{0} Ax=0。若 x 1 = ξ 11 x_1 = \xi_{11} x1=ξ11 x 2 = ξ 21 x_2 = \xi_{21} x2=ξ21 ⋯ \cdots x n = ξ n 1 x_n = \xi_{n1} xn=ξn1为该齐次线性方程组的解,则 x = ξ 1 = ( ξ 11 ξ 21 ⋮ ξ n 1 ) \mathbf{x} = \boldsymbol{\xi}_1 = \begin{pmatrix} \xi_{11} \\ \xi_{21} \\ \vdots \\ \xi_{n1} \end{pmatrix} x=ξ1=ξ11ξ21ξn1称为方程组的解向量
  若 x = ξ 1 \mathbf{x} = \boldsymbol{\xi}_1 x=ξ1 x = ξ 2 \mathbf{x} = \boldsymbol{\xi}_2 x=ξ2为向量方程 A x = 0 \mathbf{Ax} = \mathbf{0} Ax=0的解,则 x = ξ 1 + ξ 2 \mathbf{x} = \boldsymbol{\xi}_1 + \boldsymbol{\xi}_2 x=ξ1+ξ2也是向量方程 A x = 0 \mathbf{Ax} = \mathbf{0} Ax=0的解。
  若 x = ξ 1 \mathbf{x} = \boldsymbol{\xi}_1 x=ξ1为向量方程 A x = 0 \mathbf{Ax} = \mathbf{0} Ax=0的解, k k k为实数,则 x = k ξ 1 \mathbf{x} = k \boldsymbol{\xi}_1 x=kξ1也是向量方程 A x = 0 \mathbf{Ax} = \mathbf{0} Ax=0的解。

基础解集

  齐次线性方程组的解集的最大无关组称为该齐次线性方程组的基础解集
  设 m × n m \times n m×n矩阵 A \mathbf{A} A的秩 R ( A ) = r R(\mathbf{A}) = r R(A)=r,则n元齐次线性方程组 A x = 0 \mathbf{Ax} = \mathbf{0} Ax=0的解集 S \mathbf{S} S的秩 R s = n − r R_s = n - r Rs=nr
  设有非齐次线性方程组 { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯    ⋯    ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \left\{\begin{matrix} a_{11} x_{1} + a_{12} x_{2} + \cdots + a_{1n} x_{n} = b_1 \\ a_{21} x_{1} + a_{22} x_{2} + \cdots + a_{2n} x_{n} = b_2 \\ \cdots \; \cdots \; \cdots \\ a_{m1} x_{1} + a_{m2} x_{2} + \cdots + a_{mn} x_{n} = b_m \end{matrix}\right. a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bm,它也可以写成向量方程 A x = b \mathbf{Ax} = \mathbf{b} Ax=b

  1. x = η 1 \mathbf{x} = \boldsymbol{\eta}_1 x=η1 x = η 2 \mathbf{x} = \boldsymbol{\eta}_2 x=η2都是向量方程 A x = b \mathbf{Ax} = \mathbf{b} Ax=b的解,则 x = η 1 − η 2 \mathbf{x} = \boldsymbol{\eta}_1 - \boldsymbol{\eta}_2 x=η1η2为对应的齐次方程组 A x = 0 \mathbf{Ax} = \mathbf{0} Ax=0的解。
  2. x = η \mathbf{x} = \boldsymbol{\eta} x=η是方程 A x = b \mathbf{Ax} = \mathbf{b} Ax=b的解, x = ξ \mathbf{x} = \boldsymbol{\xi} x=ξ是方程 A x = 0 \mathbf{Ax} = \mathbf{0} Ax=0的解,则 x = ξ + η \mathbf{x} = \boldsymbol{\xi} + \boldsymbol{\eta} x=ξ+η仍是方程 A x = b \mathbf{Ax} = \mathbf{b} Ax=b的解。

  非齐次方程的通解    =    \; = \; =对应的齐次方程的通解    +    \; + \; +非齐次方程的一个特解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值