解向量
设有齐次线性方程组
{
a
11
x
1
+
a
12
x
2
+
⋯
+
a
1
n
x
n
=
0
a
21
x
1
+
a
22
x
2
+
⋯
+
a
2
n
x
n
=
0
⋯
⋯
⋯
a
m
1
x
1
+
a
m
2
x
2
+
⋯
+
a
m
n
x
n
=
0
\left\{\begin{matrix} a_{11} x_{1} + a_{12} x_{2} + \cdots + a_{1n} x_{n} = 0 \\ a_{21} x_{1} + a_{22} x_{2} + \cdots + a_{2n} x_{n} = 0 \\ \cdots \; \cdots \; \cdots \\ a_{m1} x_{1} + a_{m2} x_{2} + \cdots + a_{mn} x_{n} = 0 \end{matrix}\right.
⎩⎪⎪⎨⎪⎪⎧a11x1+a12x2+⋯+a1nxn=0a21x1+a22x2+⋯+a2nxn=0⋯⋯⋯am1x1+am2x2+⋯+amnxn=0,记
A
=
(
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋮
a
m
1
a
m
2
⋯
a
m
n
)
\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}
A=⎝⎜⎜⎜⎛a11a21⋮am1a12a22⋮am2⋯⋯⋯a1na2n⋮amn⎠⎟⎟⎟⎞,
x
=
(
x
1
x
2
⋮
x
n
)
\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}
x=⎝⎜⎜⎜⎛x1x2⋮xn⎠⎟⎟⎟⎞,则可以写成向量方程
A
x
=
0
\mathbf{Ax} = \mathbf{0}
Ax=0。若
x
1
=
ξ
11
x_1 = \xi_{11}
x1=ξ11,
x
2
=
ξ
21
x_2 = \xi_{21}
x2=ξ21,
⋯
\cdots
⋯,
x
n
=
ξ
n
1
x_n = \xi_{n1}
xn=ξn1为该齐次线性方程组的解,则
x
=
ξ
1
=
(
ξ
11
ξ
21
⋮
ξ
n
1
)
\mathbf{x} = \boldsymbol{\xi}_1 = \begin{pmatrix} \xi_{11} \\ \xi_{21} \\ \vdots \\ \xi_{n1} \end{pmatrix}
x=ξ1=⎝⎜⎜⎜⎛ξ11ξ21⋮ξn1⎠⎟⎟⎟⎞称为方程组的解向量
。
若
x
=
ξ
1
\mathbf{x} = \boldsymbol{\xi}_1
x=ξ1,
x
=
ξ
2
\mathbf{x} = \boldsymbol{\xi}_2
x=ξ2为向量方程
A
x
=
0
\mathbf{Ax} = \mathbf{0}
Ax=0的解,则
x
=
ξ
1
+
ξ
2
\mathbf{x} = \boldsymbol{\xi}_1 + \boldsymbol{\xi}_2
x=ξ1+ξ2也是向量方程
A
x
=
0
\mathbf{Ax} = \mathbf{0}
Ax=0的解。
若
x
=
ξ
1
\mathbf{x} = \boldsymbol{\xi}_1
x=ξ1为向量方程
A
x
=
0
\mathbf{Ax} = \mathbf{0}
Ax=0的解,
k
k
k为实数,则
x
=
k
ξ
1
\mathbf{x} = k \boldsymbol{\xi}_1
x=kξ1也是向量方程
A
x
=
0
\mathbf{Ax} = \mathbf{0}
Ax=0的解。
基础解集
齐次线性方程组的解集的最大无关组称为该齐次线性方程组的基础解集
。
设
m
×
n
m \times n
m×n矩阵
A
\mathbf{A}
A的秩
R
(
A
)
=
r
R(\mathbf{A}) = r
R(A)=r,则n
元齐次线性方程组
A
x
=
0
\mathbf{Ax} = \mathbf{0}
Ax=0的解集
S
\mathbf{S}
S的秩
R
s
=
n
−
r
R_s = n - r
Rs=n−r。
设有非齐次线性方程组
{
a
11
x
1
+
a
12
x
2
+
⋯
+
a
1
n
x
n
=
b
1
a
21
x
1
+
a
22
x
2
+
⋯
+
a
2
n
x
n
=
b
2
⋯
⋯
⋯
a
m
1
x
1
+
a
m
2
x
2
+
⋯
+
a
m
n
x
n
=
b
m
\left\{\begin{matrix} a_{11} x_{1} + a_{12} x_{2} + \cdots + a_{1n} x_{n} = b_1 \\ a_{21} x_{1} + a_{22} x_{2} + \cdots + a_{2n} x_{n} = b_2 \\ \cdots \; \cdots \; \cdots \\ a_{m1} x_{1} + a_{m2} x_{2} + \cdots + a_{mn} x_{n} = b_m \end{matrix}\right.
⎩⎪⎪⎨⎪⎪⎧a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2⋯⋯⋯am1x1+am2x2+⋯+amnxn=bm,它也可以写成向量方程
A
x
=
b
\mathbf{Ax} = \mathbf{b}
Ax=b:
- 设 x = η 1 \mathbf{x} = \boldsymbol{\eta}_1 x=η1及 x = η 2 \mathbf{x} = \boldsymbol{\eta}_2 x=η2都是向量方程 A x = b \mathbf{Ax} = \mathbf{b} Ax=b的解,则 x = η 1 − η 2 \mathbf{x} = \boldsymbol{\eta}_1 - \boldsymbol{\eta}_2 x=η1−η2为对应的齐次方程组 A x = 0 \mathbf{Ax} = \mathbf{0} Ax=0的解。
- 设 x = η \mathbf{x} = \boldsymbol{\eta} x=η是方程 A x = b \mathbf{Ax} = \mathbf{b} Ax=b的解, x = ξ \mathbf{x} = \boldsymbol{\xi} x=ξ是方程 A x = 0 \mathbf{Ax} = \mathbf{0} Ax=0的解,则 x = ξ + η \mathbf{x} = \boldsymbol{\xi} + \boldsymbol{\eta} x=ξ+η仍是方程 A x = b \mathbf{Ax} = \mathbf{b} Ax=b的解。
非齐次方程的通解 = \; = \; =对应的齐次方程的通解 + \; + \; +非齐次方程的一个特解。