C语言贪心算法——找钱

本文介绍了贪心算法的基本概念,包括贪心选择性质和最优子结构性质,并通过C语言实现了一个找零钱问题的示例。在给定面值为20, 10, 5, 1的硬币情况下,贪心算法力求使用最少的硬币数找零。然而,贪心算法并不总能得到整体最优解,如在面值11, 5, 1的情况下找零15,贪心算法给出的解决方案并不理想。" 132650290,11421163,Python实现多人联机游戏及交互,"['Python', '游戏开发', '网络编程', 'pygame', '多人游戏']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,我们先解释一下贪心算法,贪心算法不是对所有问题都能得到整体最优解,但对范围相当

的许多问题能产生整体最优解,如最小生成树问题、图的单源路径最短问题等。

贪心算法有两个重要的性质:贪心选择性质和最优子结构性质。

其中,贪心选择性质是指,所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。而最优子结构性质是当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。

而我接下来要叙述的问题是贪心算法中较为经典的例子,找零钱问题。

在现实生活中,经常遇到找零问题,假设有数目不限的面值为20,10,5,1的硬币。

给出需要找零数,求出找零方案,要求:使用数目最少的硬币。

而我们对于此类问题,贪心算法采取的方式是找钱时,总是选取可供找钱的硬币的最大值。

比如,需要找钱数为25时,找钱方式为20+5,而不是10+10+5。

下面是C语言实现问题的解(VC6.0运行,代码如下:)

#include<stdio.h>
#include <windows.h>
 
void greedyMoney(int m[],int k,int n);
 
int main(void)
{
  int money[] = {20,10,5,1};
  int k;
  k = sizeof(money)/sizeof(money[0]); 
  greedyMoney(money,k,25);
  system("PAUSE");
}
 
/*
  m[]:存放可供找零的面值,降序排列 
    k:可供找零的面值种类数 
    n:需要找零数 
*/
void greedyMoney(int m[],int k,int n)
{

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迷糊的小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值