基于同态学习误差(LWE)的电子投票方案
在当今数字化时代,电子投票系统的安全性和隐私性至关重要。基于同态学习误差(LWE)的电子投票方案为解决这些问题提供了一种有效的途径。本文将深入探讨该方案的核心概念、构建模块以及详细的协议流程。
1. 实验与可验证性定义
在存在恶意对手的情况下,对手可能会破坏除A1之外的所有用户。我们定义了两个实验:$Exp_{bpriv,\beta}^{A,Vote}(\lambda)$ 和 $Exp_{ver}^{A,Vote}(\lambda)$。对于一个投票协议 $Vote$,如果对于任何概率多项式时间(PPT)对手 $A$,$Succ_{ver}(A) = Pr[Exp_{ver}^{A,Vote}(\lambda) = 1]$ 在 $\lambda$ 上是可忽略的,那么我们称该投票协议是可验证的。
2. 密码学构建模块
该方案基于以下后量子构建模块:
- 存在不可伪造签名 :用于选民对选票进行签名,其安全性基于后量子假设,依赖于在格中寻找短向量的困难性。
- 非延展性加密 :确保加密数据的安全性和完整性。
- 基于LWE的同态加密 :允许在加密数据上进行计算,而无需解密。
- 格陷门 :用于实现可验证的解密操作。
3. 具体构建模块详解
3.1 签名
签名用于选民对选票进行签名,其安全性基于后量子假设,依赖于在格中寻找短向量的困难性。例如,一种基于格的签名方案受到L