31、基于同态学习误差(LWE)的电子投票方案

基于同态学习误差(LWE)的电子投票方案

在当今数字化时代,电子投票系统的安全性和隐私性至关重要。基于同态学习误差(LWE)的电子投票方案为解决这些问题提供了一种有效的途径。本文将深入探讨该方案的核心概念、构建模块以及详细的协议流程。

1. 实验与可验证性定义

在存在恶意对手的情况下,对手可能会破坏除A1之外的所有用户。我们定义了两个实验:$Exp_{bpriv,\beta}^{A,Vote}(\lambda)$ 和 $Exp_{ver}^{A,Vote}(\lambda)$。对于一个投票协议 $Vote$,如果对于任何概率多项式时间(PPT)对手 $A$,$Succ_{ver}(A) = Pr[Exp_{ver}^{A,Vote}(\lambda) = 1]$ 在 $\lambda$ 上是可忽略的,那么我们称该投票协议是可验证的。

2. 密码学构建模块

该方案基于以下后量子构建模块:
- 存在不可伪造签名 :用于选民对选票进行签名,其安全性基于后量子假设,依赖于在格中寻找短向量的困难性。
- 非延展性加密 :确保加密数据的安全性和完整性。
- 基于LWE的同态加密 :允许在加密数据上进行计算,而无需解密。
- 格陷门 :用于实现可验证的解密操作。

3. 具体构建模块详解
3.1 签名

签名用于选民对选票进行签名,其安全性基于后量子假设,依赖于在格中寻找短向量的困难性。例如,一种基于格的签名方案受到L

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值