17、麦利耶斯公钥密码系统的密码分析攻击方案解析

麦利耶斯公钥密码系统的密码分析攻击方案解析

1. 引言

密码等价问题在密码学领域一直是一个关键且具有挑战性的问题。本文聚焦于解决特定的密码等价问题,特别是针对二进制极性码的情况。通过一系列步骤和算法,我们旨在找到一种有效的方法来解决密码等价问题,并对麦利耶斯公钥密码系统进行攻击。

2. 解决密码等价问题的步骤
2.1 步骤 1 - 最小重量码字搜索

寻找 $C (I)π$ 的码字可通过应用 Dumer 算法实现。对于速率为 $R$ 的码,找到重量为 $w$ 的码字的复杂度,当 $w$ 是码长的次线性函数且码长 $n$ 趋于无穷大时,可估计为 $O\left(e^{-w \ln(1 - R)(1 + o(1))}\right)$。对于单项式码,速率大于某个常数 $\varepsilon > 0$ 的码的最小距离至多为 $O(\sqrt{n})$,这对于本文考虑的极性码是可以实现的。同时,利用定理 3 可轻松获得 $C (I)$ 的所有最小码字,$W_{min}$ 可分解为在 $LTA_m$ 作用下的轨道,每个轨道包含 $I$ 中一个次数为 $r^+$ 的单项式。

2.2 步骤 2 - $W_{min}$ 中轨道的签名

为区分 $W_{min}$ 中的码字,我们在 $LTA_m$ 作用下分解 $W_{min}$ 的每个轨道中选择一个单项式 $g$,并计算关于 $ev(g)$ 的支持 $J$ 的缩短码 $D = \left(S_J (C (I))\right)^{\perp}$ 的对偶。对于本文考虑的极性码,对偶码 $D$ 中重量为 $2r^-$ 的码字数量和 $D$ 的维数这一对参数足以区分轨道,从而得到轨

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值