【大模型应用开发-实战】(十二)手把手入门QWen官方API调用-准备工作(一)

 目录

一、准备工作

1)访问千问官网

2)注册与登录

3)实名认证

二、申请API Key

1)访问API Keys页面

2)创建API Key

3)记录API Key


一、准备工作

1)访问千问官网

打开浏览器,访问AI开放平台官网

大模型服务平台百炼控制台

2)注册与登录

在官网上注册账号,或使用已有账号登录。

大模型服务平台百炼控制台

3)实名认证

完成实名认证,可以选择个人身份证认证或公司营业执照认证。

二、申请API Key

1)访问API Keys页面

实名认证完成后,访问用户中心的API Keys页面。

apikey创建页面

大模型服务平台百炼控制台

2)创建API Key

点击创建新的API Key,填写必要的信息,如应用名称等。

3)记录API Key

创建成功后,记录下API Key,这将作为后续API调用的身份验证凭证。

<think>我们已知用户想了解如何通过HTTP调用deepseek-r1-distill-qwen模型的API。根据提供的引用,我们可以知道该模型可以通过多种方式部署(如Ollama、vLLM等),部署后提供API服务。由于用户明确提到HTTP调用,我们需要给出个通用的HTTP API调用示例,并说明必要的步骤。 步骤: 1. 首先需要部署模型,部署方式可以是Ollama、vLLM等。 2. 部署完成后,模型会提供个HTTP API端点(endpoint)。 3. 通过发送HTTP POST请求到该端点,并按照API要求的格式传递参数(如模型名称、输入文本等)来调用模型。 由于引用中提到了多种部署方式,这里我们以Ollama部署为例(因为引用[3]中提到了Ollama部署DeepSeek-R1-Distill-Qwen),并给出调用示例。 注意:不同的部署工具可能提供不同的API格式。Ollama的API格式类似于OpenAI的API格式,而vLLM部署的API可能有所不同。但用户要求的是通用的HTTP调用,因此我们以Ollama为例,因为它相对简单且引用中提到了。 Ollama部署后,默认会在本地11434端口提供API服务。 API调用示例(使用curl): ```bash curl http://localhost:11434/api/generate -d '{ "model": "deepseek-r1:14b", "prompt": "为什么天空是蓝色的?", "stream": false }' ``` 或者使用Python代码(使用requests库): ```python import requests url = 'http://localhost:11434/api/generate' data = { "model": "deepseek-r1:14b", # 模型名称,根据部署时使用的模型名称填写 "prompt": "为什么天空是蓝色的?", "stream": False # 设置为False表示次性返回所有结果,而不是流式 } response = requests.post(url, json=data) if response.status_code == 200: result = response.json() print(result['response']) # 输出模型的回答 else: print(f"请求失败,状态码:{response.status_code}") ``` 注意:在实际部署时,需要确保模型已经正确下载并运行。例如,使用Ollama运行模型:`ollama run deepseek-r1:14b`。 如果使用vLLM部署(引用[4]),则API调用方式可能不同。vLLM通常提供OpenAI兼容的API,因此可以这样调用: ```python from openai import OpenAI # 注意:vLLM部署的API地址可能与Ollama不同 client = OpenAI( base_url="http://localhost:8000/v1", # vLLM默认使用8000端口 api_key="token-abc123" # 如果设置了api-key,否则可以忽略 ) completion = client.completions.create( model="deepseek-r1-distill-qwen-7b", # 模型名称,根据部署时设置 prompt="为什么天空是蓝色的?" ) print(completion.choices[0].text) ``` 但是,由于用户要求的是HTTP调用,我们也可以给出vLLM的原始HTTP调用方式: ```bash curl -X POST "http://localhost:8000/v1/completions" \ -H "Content-Type: application/json" \ -d '{ "model": "deepseek-r1-distill-qwen-7b", "prompt": "为什么天空是蓝色的?", "max_tokens": 100, "temperature": 0.7 }' ``` 总结:具体调用方式取决于部署方式。用户需要先完成模型部署,然后根据部署工具提供的API文档进行调用。 §§相关题§§ 1. 如何部署deepseek-r1-distill-qwen模型? 2. 使用Ollama部署deepseek-r1-distill-qwen模型的步骤是什么? 3. 使用vLLM部署deepseek-r1-distill-qwen模型有哪些优势?</think>### 如何通过HTTP调用DeepSeek-R1-Distill-Qwen模型的API 要使用HTTP调用DeepSeek-R1-Distill-Qwen模型的API,需要先完成模型部署,然后通过API端点发送请求。以下是具体步骤: #### 1. **部署模型服务端** 首先需要部署模型服务,提供HTTP API端点。推荐两种部署方式: **方法:使用Ollama部署(简单快捷)** ```bash # 下载并运行模型(14B版本) ollama run deepseek-r1:14b # 启动API服务(默认端口11434) ollama serve ``` 服务启动后,API端点:`http://localhost:11434/api/generate`[^3] **方法二:使用vLLM部署(高性能)** ```python from vllm import LLM, SamplingParams # 加载模型 llm = LLM(model="deepseek-r1-distill-qwen-7b") # 启动API服务(默认端口8000) !python -m vllm.entrypoints.openai.api_server --model deepseek-r1-distill-qwen-7b ``` 服务启动后,API端点:`http://localhost:8000/v1/completions`[^4] --- #### 2. **HTTP API调用示例 使用`curl`发送请求: **调用Ollama API** ```bash curl http://localhost:11434/api/generate -d '{ "model": "deepseek-r1:14b", "prompt": "解释量子计算的基本原理", "stream": false, "options": {"temperature": 0.7} }' ``` **调用vLLM API(OpenAI兼容格式)** ```bash curl http://localhost:8000/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "deepseek-r1-distill-qwen-7b", "prompt": "法国的首都是哪里?", "max_tokens": 100, "temperature": 0.5 }' ``` --- #### 3. **Python代码调用示例 使用`requests`库发送API请求: ```python import requests # API配置 API_URL = "http://localhost:8000/v1/completions" # vLLM端点 HEADERS = {"Content-Type": "application/json"} # 请求参数 payload = { "model": "deepseek-r1-distill-qwen-7b", "prompt": "如何预防感冒?请给出三点建议", "max_tokens": 200, "temperature": 0.6, "top_p": 0.9 } # 发送请求 response = requests.post(API_URL, headers=HEADERS, json=payload) # 处理响应 if response.status_code == 200: result = response.json() print("模型回复:", result["choices"][0]["text"]) else: print("请求失败,状态码:", response.status_code) ``` --- #### 4. **关键参数说明 | 参数 | 类型 | 说明 | |------|------|------| | `model` | string | 模型标识符(如`deepseek-r1:14b`) | | `prompt` | string | 输入文本提示 | | `max_tokens` | int | 生成文本的最大长度 | | `temperature` | float | 采样随机性(0-1,值越高越随机) | | `top_p` | float | 核采样概率(0-1,通常0.7-0.9) | | `stream` | bool | 是否启用流式响应 | --- #### 5. **注意事项 1. **认证安全**:生产环境需添加API密钥验证 2. **性能优化**: - 使用vLLM可获得更高吞吐量(比HuggingFace高14-24倍)[^4] - 批处理请求可提升效率 3. **模型版本**: - 7B参数版本:`deepseek-r1-distill-qwen-7b` - 14B参数版本:`deepseek-r1:14b` > 部署参考:DeepSeek-R1-Distill-Qwen可通过Ollama或vLLM框架部署[^1][^2],其中vLLM利用PagedAttention技术显著提升推理效率[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

forest_long

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值