解决新版 Edge 浏览器每次打开都弹出“ 禁用开发人员模式扩展 ”弹窗的问题(亲测有效)

新版Edge浏览器采用Chromium内核,支持Chrome插件。直接加载本地文件安装插件后,每次启动出现“禁用开发人员模式扩展”弹窗。解决方法为卸载当前版本,安装dev版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

新版的 Edge 浏览器换了Chromium内核,据说功能和用户体验上可以和chrome浏览器相媲美,所以就想试一试。从官网下载了最新版本,安装后的第一件事情就是给浏览器装插件,提高浏览器的战斗力。
采用了Chromium内核,我想应该支持chrome浏览器的插件,故采用了直接加载本地文件的方式进行了安装,安装成功了也可以使用,但随后发现了一个问题,每次重新打开浏览器时,在右上角插件的位置总是弹出“禁用开发人员模式扩展”的弹窗,非常讨厌严重影响体验,我尝试了关闭开发人员模式,打开** 允许来自其他商店的扩展**,结果并没有起到作用,每次重新打开还是弹窗,讨厌至极。__在这里插入图片描述

问题描述:

新版Edge安装插件后,每次打开都会弹出 禁用开发人员模式扩展的窗口

解决方法:

卸载现在的版本,安装 dev 版本
下载地址:https://www.microsoftedgeinsider.com/en-us/download
在这里插入图片描述

### 回答1: 您可以使用Android Studio将YOLOv5模型部署到Android设备上。首先,您需要将YOLOv5模型转换为TensorFlow Lite格式,然后将其添加到Android Studio项目中。接下来,您可以使用Java或Kotlin编写代码来加载模型并在Android设备上运行YOLOv5目标检。具体的步骤和代码实现可以参考相关的教程和文档。 ### 回答2: 要将YOLOv5部署到Android设备上,可以按照以下步骤进行: 1. 安装Android开发环境:确保已安装Java开发工具包(JDK)和Android Studio。这样可以使用Android Studio进行开发和构建。 2. 创建一个新的Android项目:在Android Studio中创建一个新的项目,并选择合适的项目名称和存储位置。 3. 添加YOLOv5模型:将YOLOv5的模型文件(如.weights或.pt文件)添加到Android项目的"assets"文件夹中。 4. 配置项目依赖项:在项目的build.gradle文件中,通过添加相应的依赖项,引入OpenCV和PyTorch库。 5. 配置JNI接口:创建一个JNI(Java Native Interface)接口文件,将其与YOLOv5模型集成。JNI接口可以通过调用本地C/C++代码来连接Java代码和模型。 6. 编写Java代码:编写适当的Java代码以加载YOLOv5模型并进行目标检。这包括从相机捕获图像,调用JNI接口加载模型并获取检结果。 7. 构建和打包项目:使用Android Studio进行构建,以生成一个或多个APK文件。确保配置AndroidManifest.xml文件以获取所需的权限和功能。 8. 安装和运行应用程序:将生成的APK文件发送到Android设备,并安装和运行应用程序。确保设备具有足够的性能和存储空间来运行YOLOv5模型。 通过以上步骤,您就可以将YOLOv5成功部署到Android设备上,并使用相机进行实时目标检。请注意,这个过程可能需要一些开发经验,并且可能需要在不同的环境中进行一些调整和修改,以适应您的具体需求和设备。 ### 回答3: 要将YOLOv5部署到Android设备上,可以按照以下步骤进行操作: 首先,需要将YOLOv5模型转换为适用于Android设备的格式。可以使用ONNX或TFLite等工具将模型从PyTorch转换为可在Android上运行的格式。 接下来,创建一个Android项目,并将转换后的模型文件添加到项目中。 在Android项目中,需要使用相关的深度学习推理库,如TensorFlow Lite或NCNN。这些库支持在Android设备上运行深度学习模型。可以根据自己的需求选择合适的库,并将其集成到Android项目中。 然后,在Android项目中编写代码,加载转换后的模型,并使用深度学习推理库进行目标检。可以使用相机API或视频流作为输入,对每一帧进行目标检,并将检结果显示在屏幕上。 为了提高目标检的性能,可以使用一些优化技术。例如,可以使用图像预处理技术对输入图像进行调整和裁剪,以提高模型的准确性和速度。此外,还可以使用硬件加速技术,如GPU或NEON指令集,来加速推理过程。 最后,将整个Android项目构建为一个APK文件,并安装到Android设备上进行试。可以在实际场景中试模型的性能和准确性,并根据需要进行调整和优化。 总的来说,将YOLOv5部署到Android设备上需要进行模型转换、库集成、代码编写和优化等步骤。这些步骤确保了将YOLOv5成功部署到Android设备上,并实现在移动设备上进行实时目标检的功能。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值