应该了解的数据库系统高性能利器-WAL

WAL(Write-Ahead Logging)是数据库系统中确保原子性和持久性的关键技术,通过预先写入日志文件保证数据不丢失。WAL优化了更新流程,使用顺序写入提高IO吞吐,减少了磁盘随机读写,提升了并发性能。在数据库如PostgreSQL、Zookeeper、Elasticsearch等场景下广泛应用。WAL通过日志刷盘策略确保数据安全,同时支持故障恢复和高并发处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

WAL是什么

计算机科学中,预写式日志(Write-ahead logging,缩写 WAL)是关系数据库系统中用于提供原子性和持久性(ACID属性中的两个)的一系列技术。在使用WAL的系统中,所有的修改在生效之前都要先写入log文件中。

WAL允许用in-place方式更新数据库。另一种用来实现原子更新的方法是shadow paging,它并不是in-place方式。用in-place方式做更新的主要优点是减少索引和块列表的修改。ARIES是WAL系列技术常用的算法。在文件系统中,WAL通常称为journaling。PostgreSQL也是用WAL来提供point-in-time恢复和数据库复制特性。

log文件是存储在磁盘中,即持久化,所以WAL一个核心功能就是保证数据不丢,故障后可以启动恢复。

参考这张图,很好说明了WAL的位置:(sync成本高,append说明是顺序写,同时做批量)

运用案例

1. 数据库系统中的redo log和undo log。

可以看下本人以前总结过的redo log刷盘策略

2. Zookeeper的更新操作先写事务日志WAL。

3. Elasticsearch 的 translog ,或者叫事务日志,在每一次对 Elasticsearch 进行操作时写入。

4. etcd的wal,数据修改写入wal日志。

5. Hbase的HLog,每次的数据修改都会写入Hlog,同时写入MemStore。

可以参考下如下Hlog和MemStore的关系。

6. Cassandra等等各种其他数据库基本都用到WAL

WAL解决的痛点

  1. 数据持久性:提高写入效率,会先写入内存,但内存数据不安全,借助WAL落盘

  2. 绕过IO瓶颈:避免随机磁盘读写,WAL是顺序日志,提升IO吞吐

    数据随机写入会导致脏页较多,导致更多的fsync,将更新转换成顺序的日志,批量刷盘,效率能提升几个量级

  3. 高并发:增强写入和读取的并发能力,同时请求时数据写入和最终数据落盘是可以并行执行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TechingOn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值