spark的sortshuffle和hashshuffle

本文深入探讨了Spark的shuffle机制,包括被弃用的hashshuffle及其Consolidate优化,以及演进到sortshuffle的过程。sortshuffle通过排序解决了数据分布问题,但也带来了性能开销。进一步的优化是bypass机制,它在某些情况下避免了排序,降低了内存使用。文章总结了各种shuffle机制的优缺点,并探讨了如何根据任务特性选择合适的shuffle策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,hashshuffle

最早引入的shuffle机制,spark2.0已经被弃用。

在这里插入图片描述

运行时步骤:
1,spark根据key将结果hash到不同buffer;
2,map完成后buffer溢写到磁盘文件,一个buffer一个文件;
3,task拉取小文件;

问题:
1,使用大量小文件,io频繁;
2,使用大量buffer内存,易出现oom。

优化后的hashshuffle:Consolidate机制

在这里插入图片描述

同一个task相同的hash共用一个buffer,减少了小文件的数量,但还是会占用大量内存,由此催生出了sortshuffle。

二,sortshuffle

在这里插入图片描述
sortshuffle的流程可以总结为三步:spill、排序、合并。

一个task只有一个buffer内存,写入内存时没有hash。

步骤:
1,task的map将结果数据写入到缓存(Map(PartitionedAppendOnlyMap)或者数组PartitionedPairBuffer),默认大小时5M;
2,过程中定时器不定期估算缓存的大小,内存结构超过一定比例时,会申请新的内存,申请大小为:(2*当前大小 - 5)M;
3,如果申请新内存失败,则会将当前数据写入磁盘文件,按批写入,每批10000条;
4,写入文件之前会按照分区和key进行排序;
5,task完成后将所有小文件进行归并合并,合并生成一个磁盘文件,一个索引文件;
6,reduce根据索引从map拉取数据

问题:

1,需要排序,影响性能;
2,中间有很多小文件,io导致性能降低;
3,排序能不能省:不能省,因为在写入缓存和落盘的过程中没有根据reduce任务分区,不排序的话无法在合并时将相同分区合并在一起(使用了归并排序)。

优化:bypass机制

bypass机制运行条件:

  • shuffle map task数量小于spark.shuffle.sort.bypassMergeThreshold参数的值。不宜有太多分区因为过程中会并发打开所有分区对应的临时文件,会对文件系统造成很大的压力。
    bypass之后类似于hashshuffle,多了溢写操作,不容易出现oom。
  • 不是聚合类的shuffle算子(比如reduceByKey),聚合类算子会大幅降低数据量,排序所需资源也很少。一个key只有少量数据,这样的话还要一个文件存储,反而降低效率。

仔细看bypass的流程,基本就是hash based shuffle,区别在于最后会合并为一个文件。

在这里插入图片描述

和未优化前的区别:

  • 1,写入缓存时会根据key进行hash,写入到不同缓存;
  • 2,不需要排序,直接将内存中的数据写入磁盘文件;

相同点:

  • 都会溢写、合并

主要优化:

  • 省去了排序

sortshuffle相当于hashshuffle的优化

  • 1,hashshuffle是先把所有数据写入缓存,然后一次性写入磁盘文件
  • 2,hashushuffle的磁盘文件不会合并,导致有很多小文件

https://www.aboutyun.com/thread-27330-1-1.html

彻底搞懂spark的shuffle过程(shuffle write)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小手追梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值