一,hashshuffle
最早引入的shuffle机制,spark2.0已经被弃用。
运行时步骤:
1,spark根据key将结果hash到不同buffer;
2,map完成后buffer溢写到磁盘文件,一个buffer一个文件;
3,task拉取小文件;
问题:
1,使用大量小文件,io频繁;
2,使用大量buffer内存,易出现oom。
优化后的hashshuffle:Consolidate机制
同一个task相同的hash共用一个buffer,减少了小文件的数量,但还是会占用大量内存,由此催生出了sortshuffle。
二,sortshuffle
sortshuffle的流程可以总结为三步:spill、排序、合并。
一个task只有一个buffer内存,写入内存时没有hash。
步骤:
1,task的map将结果数据写入到缓存(Map(PartitionedAppendOnlyMap)或者数组PartitionedPairBuffer),默认大小时5M;
2,过程中定时器不定期估算缓存的大小,内存结构超过一定比例时,会申请新的内存,申请大小为:(2*当前大小 - 5)M;
3,如果申请新内存失败,则会将当前数据写入磁盘文件,按批写入,每批10000条;
4,写入文件之前会按照分区和key进行排序;
5,task完成后将所有小文件进行归并合并,合并生成一个磁盘文件,一个索引文件;
6,reduce根据索引从map拉取数据
问题:
1,需要排序,影响性能;
2,中间有很多小文件,io导致性能降低;
3,排序能不能省:不能省,因为在写入缓存和落盘的过程中没有根据reduce任务分区,不排序的话无法在合并时将相同分区合并在一起(使用了归并排序)。
优化:bypass机制
bypass机制运行条件:
- shuffle map task数量小于spark.shuffle.sort.bypassMergeThreshold参数的值。不宜有太多分区因为过程中会并发打开所有分区对应的临时文件,会对文件系统造成很大的压力。
bypass之后类似于hashshuffle,多了溢写操作,不容易出现oom。 - 不是聚合类的shuffle算子(比如reduceByKey),聚合类算子会大幅降低数据量,排序所需资源也很少。一个key只有少量数据,这样的话还要一个文件存储,反而降低效率。
仔细看bypass的流程,基本就是hash based shuffle,区别在于最后会合并为一个文件。
和未优化前的区别:
- 1,写入缓存时会根据key进行hash,写入到不同缓存;
- 2,不需要排序,直接将内存中的数据写入磁盘文件;
相同点:
- 都会溢写、合并
主要优化:
- 省去了排序
sortshuffle相当于hashshuffle的优化
- 1,hashshuffle是先把所有数据写入缓存,然后一次性写入磁盘文件
- 2,hashushuffle的磁盘文件不会合并,导致有很多小文件
https://www.aboutyun.com/thread-27330-1-1.html