【深度学习】网络结构、损失函数、激活函数、训练过程、手写体识别、编辑距离 总结

本文总结了深度学习的基础网络结构,包括全连接神经网络(DNN)、卷积神经网络(CNN)、循环神经网络(RNN)及其变种LSTM。探讨了损失函数在模型训练中的作用,以及CNN的训练过程。同时,介绍了手写体识别的应用实例,并讲解了编辑距离在字符串相似度计算中的应用。最后,讨论了激活函数在神经网络中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 网络结构总结

1.1 DNN(全连接神经网络)

在这里插入图片描述
在这里插入图片描述

√ 全连接神经网络(DNN)
深度学习开端|全连接神经网络
全连接神经网络简介
深度神经网络(DNN)

1.2 CNN(卷积神经网络)

在这里插入图片描述
详解CNN卷积神经网络
√ 卷积神经网络CNN总结
【DL笔记6】从此明白了卷积神经网络(CNN)
卷积神经网络CNN完全指南终极版(一)

1.3 RNN(循环神经网络)

在这里插入图片描述
一文搞懂RNN(循环神经网络)基础篇

1.4 LSTM(长短期记忆)

在这里插入图片描述
在这里插入图片描述

√ 史上最详细循环神经网络讲解(RNN/LSTM/GRU)
理解 LSTM 网络
人人都能看懂的LSTM

2. 损失函数总结

深度学习之损失函数小结
深度学习中常用损失函数
深度学习-Loss函数
cross entropy 与 square error(square error在神经网络中的梯度消失问题)
“两步走方法“解析损失函数:mean square error,cross entropy,softmax,SVM
深度学习常用损失函数–github

3. 训练过程总结

√ CNN - 卷积神经网络的训练过程
深度学习的训练和调参
深度学习训练技巧总结
带你深入AI(1) - 深度学习模型训练痛点及解决方法
深度学习模型训练全流程!
√ 深度学习模型训练过程
以一个简单的RNN为例梳理神经网络的训练过程

4. 手写体识别

基于CNN的手写数字识别
【Get】用深度学习识别手写数字

5. 编辑距离

详解编辑距离(Edit Distance)及其代码实现
编辑距离详解
字符串相似度算法(编辑距离算法 Levenshtein Distance)

6. 激活函数

【机器学习】激活函数(ReLU, Swish, Maxout)
激活函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值