深度学习总结
1. 网络结构总结
1.1 DNN(全连接神经网络)
√ 全连接神经网络(DNN)
深度学习开端|全连接神经网络
全连接神经网络简介
深度神经网络(DNN)
1.2 CNN(卷积神经网络)
详解CNN卷积神经网络
√ 卷积神经网络CNN总结
【DL笔记6】从此明白了卷积神经网络(CNN)
卷积神经网络CNN完全指南终极版(一)
1.3 RNN(循环神经网络)
1.4 LSTM(长短期记忆)
√ 史上最详细循环神经网络讲解(RNN/LSTM/GRU)
理解 LSTM 网络
人人都能看懂的LSTM
2. 损失函数总结
深度学习之损失函数小结
深度学习中常用损失函数
深度学习-Loss函数
cross entropy 与 square error(square error在神经网络中的梯度消失问题)
“两步走方法“解析损失函数:mean square error,cross entropy,softmax,SVM
深度学习常用损失函数–github
3. 训练过程总结
√ CNN - 卷积神经网络的训练过程
深度学习的训练和调参
深度学习训练技巧总结
带你深入AI(1) - 深度学习模型训练痛点及解决方法
深度学习模型训练全流程!
√ 深度学习模型训练过程
以一个简单的RNN为例梳理神经网络的训练过程
4. 手写体识别
5. 编辑距离
详解编辑距离(Edit Distance)及其代码实现
编辑距离详解
字符串相似度算法(编辑距离算法 Levenshtein Distance)