1.指数平均数指标(EXPMA或EMA)
指数平均数指标(Exponential Moving Average,EXPMA或EMA) EXPMA=(当日或当期收盘价-上一日或上期EXPMA)/N+上一日或上期EXPMA,其中,首次上期EXPMA值为上一期收盘价,N为天数。
从EXPMA指标的构造原理和它的使用原则来看,这一指标更接近于均线指标,而且由于EXPMA指标通过对参数进行有效地设定,可以发挥出比均线指标更为直观和有用的信息。
'''#指数平均数指标
公式:EXPMA=(当日或当期收盘价-上一日或上期EXPMA)/N+上一日或上期EXPMA,其中,首次上期EXPMA值为上一期收盘价,N为天数
self.smfactor -> 2 / (1 + period)
self.smfactor1 -> `1 - self.smfactor`
movav = prev * (1.0 - smoothfactor) + newdata * smoothfactor
'''
def __init__(self):
#ema源码位于indicators\ema.py
#指标必须要定义在策略类中的初始化函数中
self.ema=bt.ind.MovingAverageExponential(period=15)
def next(self):
#self.data.close是表示收盘价
#收盘价大于ema,买入
if self.data.close>self.ema:
self.buy()