python hexdump实现 open一个bin文件 并显示之

# -*- coding:utf-8 -*-
#!/usr/bin/env python3

import os, sys, string, shutil, re 
import base64
import struct
import codecs
import ctypes
import zlib
import requests
import urllib

from time import sleep
from urllib.parse import unquote



def hexdump1(src, length=16):
    result = []
    print("result = ", result) 
    digits = 4 if isinstance(src, str) else 2
    print("digits = ", digits) 
    
    for i in range(0, len(src), length):
        s = src[i:i + length]
        hexa = ' '.join([hex(x)[2:].upper().zfill(digits) for x in s])
        text = ''.join([chr(x) if 0x20 <= x < 0x7F else '.' for x in s])
        result.append("{0:04X}".format(i) + ' '*3 + hexa.ljust(length * (digits + 1)) + ' '*3 + '|' + "{0}".format(text))
    print('|\n'.join(result))      


def hexdump(src, length=16):
     result = []
     # 判读输入是否为字符串
     digits = 4 if isinstance(src, str) else 2
     #print("digits = ", digits)      
     for i in range(0, len(src), length):
         # 将字符串切片为16个为一组
         s = src[i:i + length]
         #print("length = ", length) 
         #print("s = ", s) 
         #print("i = ", i)
         
         #用16进制来输出, x是值,digits表示输出宽度(匹配*)
         hexa = ' '.join(["%0*X" % (digits, (x)) for x in s])
         #print("hexa = ", hexa)
         
         hexb = ' '.join(["%02X" % (x) for x in s])
         #print("hexb = ", hexb)
         
          
         # 用来输出原值
         text = ''.join([chr(x) if 0x20 <= x < 0x7F else '.' for x in s])
         #print("text = ", text, "\n""\n""\n")
         
         # %-*s, 星号是length*(digits + 1)的值 
         result.append("%04X    %-*s   |%s|" % (i, length * (digits + 1), hexa, text,))
         
         
         
     print(' \n'.join(result))


if __name__ == "__main__":
   path = "123.bin";
   fd = open(path, 'rb');
   bin_data = fd.read();
   fd.close();
   hexdump(bin_data);
   


             

   

<think>好的,我现在需要帮助用户将包含权重的.model文件转换为.bin文件。首先,我需要了解用户的具体需求和当前的情况。用户提到了引用中的一些信息,涉及到不同模型文件格式的转换,比如.pt转.bin的示例代码。这可能意味着用户已经有了一些背景知识,但需要针对.model文件的特定情况找到解决方案。 首先,我应该确认.model文件的具体格式和结构。不同的框架或工具可能使用不同的扩展名,比如PyTorch通常使用.pt或.pth,而TensorFlow可能使用.ckpt。用户提到的.model文件可能属于某个特定的框架或自定义格式,所以需要明确这一点。如果用户没有提供详细信息,可能需要做一些假设或者建议他们检查文档。 接下来,参考用户提供的引用信息,特别是引用[4]中的例子,使用export.py脚本将.pt文件转换为.bin。这可能涉及到加载原始权重,然后以二进制格式保存。类似的方法可能适用于.model文件,但需要知道如何正确加载.model文件中的权重数据。 可能的步骤包括: 1. 加载.model文件中的权重数据。这一步需要知道该文件的结构,比如是否是PyTorch的state_dict,或者是其他格式的二进制数据。 2. 将加载的权重转换为所需的.bin格式。可能需要序列化数据,确保正确的字节顺序和结构。 3. 保存为.bin文件,通常使用Python的二进制写入操作。 然而,用户的问题在于如何用代码实现这一转换。假设.model文件是PyTorch模型保存的,那么可能需要使用PyTorch的加载功能。例如,使用torch.load()加载.model文件,然后提取state_dict,将其保存为.bin文件。但根据引用[1],纯二进制.bin文件需要手动加载到模型层中,这意味着在保存时可能需要将state_dict转换为纯二进制数据,而不是PyTorch的序列化格式。 另外,用户提到的引用[3]和[4]展示了不同格式之间的转换脚本,这可能需要使用特定的函数或工具。例如,在引用[4]中,使用export.py脚本处理转换,这可能涉及模型结构的定义和权重的重新打包。 因此,可能的解决方案是: - 如果.model文件是PyTorch的检查点,可以加载后提取权重保存为.bin。 - 需要编写代码来遍历模型的参数,将它们的值以二进制形式写入文件。 - 注意二进制文件的格式,可能需要考虑数据类型的转换(如float32的存储方式)。 可能遇到的问题包括: - 不清楚.model文件的具体格式,导致无法正确加载。 - 需要手动处理权重与模型层的映射关系,如引用[1]所述。 - 不同框架之间的兼容性问题,比如从TensorFlow转换来的.model文件可能需要不同的处理方式。 为了确保正确性,用户需要先确定.model文件的来源和结构。如果是自定义格式,可能需要查阅相关文档或联系生成该文件的工具的支持团队。如果属于已知框架,则可以参考该框架的序列化方法进行转换。 总结步骤: 1. 确认.model文件的来源和结构。 2. 使用适当的库加载.model文件提取权重。 3. 将权重数据转换为二进制格式保存为.bin文件。 可能还需要处理元数据或权重名称的映射,但如果是纯二进制文件,可能只需要按顺序存储权重值,如引用[1]中提到的需要手动加载的情况。这时候,保存的.bin文件可能只是一个连续的二进制流,加载时需要知道每个权重对应的位置和形状。 因此,代码实现的大致思路可能如下(假设.model是PyTorch保存的): - 加载.model文件获取state_dict。 - 将每个张量转换为numpy数组,然后以二进制格式写入文件。 - 确保写入的顺序与加载时的顺序一致,以便后续正确加载。 例如,使用Python的struct模块或直接使用numpy的tofile方法。但需要注意,不同的保存方式会影响后续加载是否需要额外的信息(如形状、数据类型)。 最后,根据用户提供的引用,可能需要结合已有的转换脚本进行调整,特别是参考.pt转.bin的方法,应用到.model文件上。如果用户有具体的框架或工具信息,可以更精确地编写代码。</think>要将包含权重的`.model`文件转换为`.bin`文件,需根据文件格式和框架类型选择对应方法。以下是分步实现说明: --- ### 一、确认文件格式与框架 1. **确定来源** 首先需明确`.model`文件的生成框架(如PyTorch、TensorFlow或自定义工具),不同框架的加载方式差异较大。例如: - **PyTorch**:通常使用`.pt`或`.pth`,可通过`torch.load()`加载 - **TensorFlow**:常用`.ckpt`或`.h5`,需用`tf.keras.models.load_model()` - **自定义格式**:需查阅对应工具文档 2. **验证文件结构** 若文件是**纯二进制权重**(如引用[1]中的`.bin`),则需手动解析;若包含模型结构(如PyTorch的检查点),需提取权重部分。 --- ### 二、代码实现(以PyTorch为例) 假设`.model`文件为PyTorch保存的完整模型(含结构和权重),可通过以下步骤转换: #### 1. 加载模型提取权重 ```python import torch # 加载.model文件 model = torch.load('model.model') # 若为state_dict则用model.load_state_dict(torch.load('model.model')) state_dict = model.state_dict() # 提取权重字典 ``` #### 2. 保存为.bin文件 ```python with open('weights.bin', 'wb') as f: for key in state_dict: # 将张量转为numpy数组序列化为二进制 tensor = state_dict[key].cpu().numpy() f.write(tensor.tobytes()) # 按顺序写入二进制数据 ``` 此方法生成连续的二进制流,**加载时需按相同顺序恢复张量形状和类型**[^1]。 --- ### 三、进阶处理(含元数据) 若需保留权重名称或形状信息(类似`.pt`的灵活性): ```python import struct with open('weights_with_meta.bin', 'wb') as f: for name, param in state_dict.items(): # 写入名称长度和名称 name_encoded = name.encode('utf-8') f.write(struct.pack('I', len(name_encoded))) # 4字节长度 f.write(name_encoded) # 写入张量形状和数据类型 np_param = param.cpu().numpy() f.write(struct.pack('I', np_param.ndim)) # 维度数 for s in np_param.shape: f.write(struct.pack('I', s)) # 各维度大小 f.write(struct.pack('B', np_param.dtype.byte)) # 数据类型 # 写入张量数据 f.write(np_param.tobytes()) ``` 加载时需按相同规则解析元数据[^1]。 --- ### 四、其他框架适配 - **TensorFlow/Keras**: ```python import tensorflow as tf model = tf.keras.models.load_model('model.model') weights = model.get_weights() with open('weights.bin', 'wb') as f: for w in weights: f.write(w.tobytes()) ``` - **自定义二进制**: 若`.model`为特定工具生成的二进制文件(如引用[2]中的NVIDIA TAO工具),需按工具要求解析(如使用`tao-converter`脚本)。 --- ### 五、验证与调试 1. **二进制一致性检查** 使用`hexdump`或Python的`hashlib`对比关键张量的二进制哈希值: ```python import hashlib with open('weights.bin', 'rb') as f: print(hashlib.md5(f.read()).hexdigest()) ``` 2. **加载测试** 按引用[1]方法将`.bin`权重手动加载到模型中: ```python model = TheModelClass() # 需提前定义模型结构 with open('weights.bin', 'rb') as f: for name, param in model.named_parameters(): shape = param.shape dtype = param.dtype # 按形状和类型从二进制流中读取数据 data = np.frombuffer(f.read(np.prod(shape)*dtype.itemsize), dtype=dtype).reshape(shape) param.data = torch.from_numpy(data) ``` ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值