记录在训练深度学习算法过程中遇到的问题及解决办法。持续更新中....

本文汇总了PyTorch开发中常见的六种错误及其解决办法,包括RuntimeError、AttributeError、KeyError等,涉及多GPU使用、数据加载、图片处理等问题,提供了实用的代码修改建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题1. RuntimeError: received 0 items of ancdata"

解决办法主要由两种:(出现这种错误是因为文件描述器共享策略达到了峰值)

(1)将代码里面的num_workers的值设为0

num_workers=0

(2) 在import torch 后面增加一句话就可以解决这个问题

import torch
torch.multiprocessing.set_sharing_strategy('file_system')

问题2. 在复制数据集到U盘上面的时候会出现‘复制文件太大,无法复制的问题’

解决办法:是因为U盘的文件格式造成的。

1. 将U盘格式化,格式化的过程中文件系统选择NTFS。

问题3. 在运行RFBNet检测算法的test_RFB.py的时候会出想KeyERROR的问题

解决办法:删除掉之前运行test_RFB.py产生的缓存就可以解决这个问题。

问题4. RuntimeError: cannot perform reduction function max on tensor with no elements because the operation

解决办法:标签问题,我使用的是voc的xml标签。在labelimg中打开标签发现右上角勾选了difficult这个选项,去掉之后保存就可以使用了。

问题5. AttributeError: 'NoneType' object has no attribute 'shape'解决方案

解决办法:这个是图片问题。以我训练VOC格式的检测算法为例:图片和标签不匹配,图片没有对应的标签。

问题6. Pytorch 多GPU multi-GPU使用 RuntimeError: all tensors must be on devices[0]

解决办法:在主文件的开头修改默认的编号。

torch.cuda.set_device(1)   #将1编号修改为默认显卡

然后再在代码上添加显卡编号:

torch.nn.DataParallel(model, device_ids=[1, 2])

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值