网络安全中专家判断的关键要素与提升策略
在网络安全领域,风险分析离不开专家的判断。尽管可以基于客观观察和历史数据构建数学模型,但专家在风险分析中仍起着不可替代的作用。专家需要定义问题、评估模糊数据或不符合现有统计数据的情况,并提出解决方案。我们应将网络安全专家视为风险评估系统的一部分,对其进行监测和微调,以提高其性能,就像校准测量仪器一样。
主观概率成分
风险分析的一个关键部分是网络安全专家对事件发生可能性的评估,例如网络安全漏洞的发生概率以及这些事件发生时的潜在成本。研究表明,在没有培训或其他控制措施的情况下,几乎所有人分配的概率都会与实际观察结果有显著偏差。例如,当我们说有 90% 的信心时,预测结果发生的频率远低于 90%。
以下是相关研究的一些发现总结:
|研究情况|发现结果|
| ---- | ---- |
|未培训情况|几乎所有人分配的概率与观察结果偏差大,如 90% 信心时实际发生频率远低于 90%|
|培训效果|有方法(包括培训)可大幅提高专家估计主观概率的能力,如培训后 90% 信心时结果发生频率接近 90%|
以企业首席财务官(CFO)的研究为例,研究人员让 CFO 提供标准普尔 500 指数的年度回报估计,以 80% 置信区间(CI)的形式给出。结果显示,他们的 80% CI 实际上只包含了 33% 的正确答案,远低于他们预期的 80%。
对于网络安全专家,同样存在过度自信的问题。通过对 2000 多名来自不同行业、职业和管理级别的人员进行测试和培训,其中包括 150 多名网络安全专家。在初始基准测试中,要求参与者给出 90% CI 来估计一般常识问题,大多数人提供的范围只包含约