时间限制:1秒 内存限制:128M
题目描述
在 Farmer John 意识到 Bessie 以难以置信的成本在他的 �(1≤�≤104)N(1≤N≤104) 个谷仓中安装了一个“树形”网络后,他起诉 Bessie 以减轻他的损失。
Bessie 怀恨在心,决定通过切断其中一个谷仓的电源(从而中断与该谷仓有关的所有连接)来破坏 Farmer John 的网络。当 Bessie 这样做时,它会将网络分解成更小的部分,每个部分都在其内部保持完整的连接性。为了尽可能具有破坏性,Bessie 希望确保每一个部分都连接了不超过一半的谷仓。
请帮助 Bessie 确定所有适合断开连接的谷仓。
输入描述
第 1 行:单个整数 �N。谷仓编号为 1⋯�1⋯N。
第 2..N 行:每行包含两个整数 �X 和 �Y,代表谷仓 �X 和 �Y 之间有连接。
输出描述
每行包含一个整数,一个谷仓的编号(从 1⋯�1⋯N 开始),移除后将网络分成多个部分,每个部分最多有原始谷仓数量的一半。按数字递增的顺序输出谷仓。如果没有合适的谷仓,输出应该是包含单词NONE
的单行。
输入样例
10
1 2
2 3
3 4
4 5
6 7
7 8
8 9
9 10
3 8
输出样例
3
8
提示
输入详细信息:
输入中的一组连接描述了一个“树”:它将所有谷仓连接在一起并且不包含任何环。
输出详细信息:
如果移除了谷仓 3 或谷仓 8,则剩余的网络将有一个由 5 个谷仓组成的部分和两个包含 2 个谷仓的部分。如果移除了任何其他谷仓,那么至少剩下的一块的尺寸至少为 6(这是谷仓原始数量 5 的一半以上)。
此题呢是可以 n 次 dfs
,以 O(2)O(n2) 的时间复杂度求解的。
但,这只是常规做法。
众所周知,树的重心可以以一次 dfs
以玄妙的方式求解以一个节点为根的最大子树大小。
这不是这道题需要去比较的吗?
我们把以一个节点为根的最大子树大小存在一个数组里面,再以一个循环比较输出就行了。
直接上代码:
#include<bits/stdc++.h>
using namespace std;
int n;
int head[10010],to[20010],nxt[20010],tot;
void add(int u,int v){
to[++tot]=v;
nxt[tot]=head[u];
head[u]=tot;
}
int dp[10010],siz[10010];
void dfs(int x,int fa){
siz[x]=1;
for(int i=head[x];i;i=nxt[i]){
if(to[i]==fa) continue;
dfs(to[i],x);
siz[x]+=siz[to[i]];
dp[x]=max(dp[x],siz[to[i]]);
}
dp[x]=max(dp[x],n-siz[x]);
}
int main() {
cin>>n;
for(int i=1;i<n;i++){
int u,v;
cin>>u>>v;
add(u,v),add(v,u);
}
dfs(1,0);
int mid=n>>1,cnt=0;
for(int i=1;i<=n;i++)
if(dp[i]<=mid)
cnt++,cout<<i<<"\n";
if(!cnt) cout<<"NONE";
return 0;
}