# 引言
在现代信息检索系统中,存储与每个文档相关的多个向量是一个强大的功能。这种方式可以通过嵌入文档的多个片段并将其与父文档相关联,使得检索器能够根据片段返回更大的文档。LangChain 提供了一种实现多向量检索的基础类 `baseMultiVectorRetriever`,该类简化了此过程。本文将探讨如何使用多向量技术,从不同的角度构建文档向量,以及如何利用 `MultiVectorRetriever` 实现有效的文档检索。
# 主要内容
## 文档分块
将文档拆分为较小的块并嵌入这些块的向量,是实现多向量检索的一种常见方法。这种方式允许嵌入捕获尽可能接近的语义意义,同时让下游系统能够接收尽可能多的上下文信息。
## 文档摘要
为每个文档创建摘要,并将这些摘要作为子文档嵌入,是提高检索准确性的一种方法。通过摘要,可以更加准确地提炼出文档的主题,从而改进检索效果。
## 假设性问题
使用语言模型(LLM)生成文档可能会回答的假设性问题,并将这些问题的嵌入结果与文档关联,这样可以增强检索能力。
# 代码示例
下面的代码示例演示了如何使用 LangChain 构建和使用 `MultiVectorRetriever`:
```python
import uuid
from langchain.storage import InMemoryByteStore
from langchain_chroma import Chroma
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharac
使用 LangChain 实现多向量检索:提高文档检索的效果和灵活性
最新推荐文章于 2025-08-09 17:19:50 发布