典型相关分析
1.典型相关分析的基本思想是首先在每组变量中找出变量的线性组合,使其具有最大相关性,然后再在每组变量中找出第二对线性组合,使其分别与第一对线性组合不相关,而第二对本身具有最大的相关性,如此继续下去,直到两组变量之间的相关性被提取完毕为止.有了这样线性组合的最大相关,则讨论两组变量之间的相关,就转化为只研究这些线性组合的最大相关,从而减少研究变量的个数.
#典型变量分析得到第一典型变量
def CAA(X,Y):
R= corrcoef(X,Y,rowvar=0)
m, n = shape(X)
p, q = shape(Y)
# print(m,n)
# print(p,q)
R11=[]
R22=[]
R12=[]
#计算相关系数
for i in range(n):
temp=R[i]
a=temp[0:n]
R11.append(a)
for j in range(n,n+q):
temp=R[j]
a=temp[n:n+q]
R22.append(a)