
机器学习
文章平均质量分 76
CYJ_fightman
I have a dream~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习有价值的文章链接
第2章 感知机1.SVM:任意点到超平面的距离公式:https://blog.csdn.net/wzx479/article/details/83143280?utm_source=blogxgwz92.几种范数的简单介绍:https://blog.csdn.net/shijing_0214/article/details/517575643.一个向量在另一个向量上的投影:向量a在向量b上的...原创 2018-11-07 15:34:27 · 264 阅读 · 0 评论 -
最小二乘法总结
最小二乘法是用来做函数拟合或者求函数极值的方法。在机器学习,尤其是回归模型中,经常可以看到最小二乘法的身影,这里就对我对最小二乘法的认知做一个小结。1.最小二乘法的原理与要解决的问题      &原创 2018-11-15 16:07:24 · 3247 阅读 · 0 评论 -
梯度下降/上升总结
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。1.梯度在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad ...原创 2018-11-15 16:44:42 · 2037 阅读 · 0 评论 -
交叉验证法总结
交叉验证是在机器学习建立模型和验证模型参数时常用的办法。交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏。在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在下次可能成为测试集中的样本,即所谓“交叉”。那么什么时候才需要交叉验证呢?交叉验证用在数据不是很充足的时候。比如在我日常项目里面,对...原创 2018-11-15 17:05:22 · 8369 阅读 · 0 评论 -
精确率与召回率,ROC曲线与PR曲线
在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),ROC曲线与PR曲线这些概念,那这些概念到底有什么用处呢?            &原创 2018-11-26 13:16:41 · 2577 阅读 · 0 评论