Numpy扩充矩阵维度(np.expand_dims, np.newaxis)和删除维度(np.squeeze)的方法

本文介绍了使用Numpy进行矩阵维度变更的方法,包括np.newaxis和np.expand_dims用于增加维度,np.squeeze用于删除维度大小为1的维度。通过实例展示了如何操作矩阵的维度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在操作矩阵的时候,不同的接口对于矩阵的输入维度要求不同,输入可能为1-D,2-D,3-D等等。下面介绍一下使用Numpy进行矩阵维度变更的相关方法。主要包括以下几种:

1、np.newaxis扩充矩阵维度

2、np.expand_dims扩充矩阵维度

3、np.squeeze删除矩阵中维度大小为1的维度


np.newaxis,np.expand_dims扩充矩阵维度:

import numpy as np

x = np.arange(8).reshape(2, 4)
print(x.shape)

# 添加第0维,输出shape -> (1, 2, 4)
x1 = x[np.newaxis, :]
print(x1.shape)

# 添加第1维, 输出shape -> (2, 1, 4)
x2 = np.expand_dims(x, axis=1)
print(x2.shape)

输出结果:

(2, 4)
(1, 2, 4)
(2, 1, 4)

np.squeeze降低矩阵维度:

"""
    squeeze 函数:从数组的形状中删除单维度条目,即把shape中为1的维度去掉
    用法:numpy.squeeze(a,axis = None)
     1)a表示输入的数组;
     2)axis用于指定需要删除的维度,但是指定的维度必须为单维度,否则将会报错;
     3)axis的取值可为None 或 int 或 tuple of ints, 可选。若axis为空,则删除所有单维度的条目;
     4)返回值:数组
     5) 不会修改原数组;
"""


import numpy as np

print("#" * 40, "原始数据", "#" * 40)
x = np.arange(10).reshape(1, 1, 10, 1)
print(x.shape)
print(x)

print("#" * 40, "去掉axis=0这个维度", "#" * 40)
x_squeeze_0 = np.squeeze(x, axis=0)
print(x_squeeze_0.shape, x_squeeze_0)

print("#" * 40, "去掉axis=3这个维度", "#" * 40)
x_squeeze_3 = np.squeeze(x, axis=3)
print(x_squeeze_3.shape, x_squeeze_3)

print("#" * 40, "去掉axis=0, axis=1这两个维度", "#" * 40)
x_squeeze_0_1 = np.squeeze(x, axis=(0, 1))
print(x_squeeze_0_1.shape, x_squeeze_0_1)

print("#" * 40, "去掉所有1维的维度", "#" * 40)
x_squeeze = np.squeeze(x)
print(x_squeeze.shape, x_squeeze)

print("#" * 40, "去掉不是1维的维度,抛异常", "#" * 40)
try:
    x_squeeze = np.squeeze(x, axis=2)
    print(x_squeeze.shape, x_squeeze)
except Exception as e:
    print(e)

输出结果:

######################################## 原始数据 ########################################
(1, 1, 10, 1)
[[[[0]
   [1]
   [2]
   [3]
   [4]
   [5]
   [6]
   [7]
   [8]
   [9]]]]
######################################## 去掉axis=0这个维度 ########################################
(1, 10, 1) [[[0]
  [1]
  [2]
  [3]
  [4]
  [5]
  [6]
  [7]
  [8]
  [9]]]
######################################## 去掉axis=3这个维度 ########################################
(1, 1, 10) [[[0 1 2 3 4 5 6 7 8 9]]]
######################################## 去掉axis=0, axis=1这两个维度 ########################################
(10, 1) [[0]
 [1]
 [2]
 [3]
 [4]
 [5]
 [6]
 [7]
 [8]
 [9]]
######################################## 去掉所有1维的维度 ########################################
(10,) [0 1 2 3 4 5 6 7 8 9]
######################################## 去掉不是1维的维度,抛异常 ########################################
cannot select an axis to squeeze out which has size not equal to one

参考链接

``` # 新增库导入 import cv2 import tensorflow as tf from tensorflow.keras.models import Model # Grad-CAM热图生成函数 def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None): grad_model = Model( [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output] ) with tf.GradientTape() as tape: last_conv_layer_output, preds = grad_model(img_array) if pred_index is None: pred_index = tf.argmax(preds[0]) class_channel = preds[:, pred_index] grads = tape.gradient(class_channel, last_conv_layer_output) pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) last_conv_layer_output = last_conv_layer_output[0] heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis] heatmap = tf.squeeze(heatmap) heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap) # 归一化 return heatmap.numpy() # 获取示例图像 sample_batch = next(train_generator) sample_images = sample_batch[0][:5] # 取前5个样本 # 获取最后一层卷积层名称(根据模型结构调整) last_conv_layer_name = "conv2d_1" # 根据实际模型结构确认 # 创建热力图可视化 plt.figure(figsize=(16, 8)) for i in range(5): img = sample_images[i] img_array = np.expand_dims(img, axis=0) # 生成热力图 heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name) # 调整热力图大小匹配原图 heatmap = cv2.resize(heatmap, (img_width, img_height)) heatmap = np.uint8(255 * heatmap) heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) # 叠加热力图原图 superimposed_img = cv2.addWeighted( cv2.cvtColor(np.uint8(img*255), cv2.COLOR_RGB2BGR), 0.6, heatmap, 0.4, 0 ) # 绘制结果 plt.subplot(2, 5, i+1) plt.imshow(img) plt.title("Original") plt.axis("off") plt.subplot(2, 5, i+6) plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB)) plt.title("Heatmap") plt.axis("off") plt.tight_layout() plt.show()```Traceback (most recent call last): File “D:\建模\cnn3.py”, line 117, in <module> heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name) File “D:\建模\cnn3.py”, line 85, in make_gradcam_heatmap [model.get_layer(last_conv_layer_name).output, model.output] File “C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\ops\operation.py”, line 280, in output return self._get_node_attribute_at_index(0, “output_tensors”, “output”) File “C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\ops\operation.py”, line 299, in _get_node_attribute_at_index raise AttributeError( AttributeError: The layer sequential has never been called and thus has no defined output… Did you mean: ‘outputs’? 解决该问题并生成一个可用的代码
03-24
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值