本文旨在为您系统梳理生成式AI中的多智能体系统(MAS)概念,深入解析其工作机制、在高等教育领域的创新应用,并为实际落地提供专业指导。无论您是高校教师、教育管理者还是教育技术研究者,都可借助本框架探索如何将多智能体系统高效融入教学与科研实践。
一、理解多智能体系统(MAS)
任务目标: 全面掌握多智能体系统的核心理念、结构要素及其在教育中的独特价值。
-
定义与核心理念:
- 什么是多智能体系统?
多智能体系统指由多个具备自主性、协作性和专业分工的AI智能体组成的系统。每个智能体拥有独特的知识、技能或角色,通过协同合作解决复杂问题,产出远超单一模型的综合性成果。 - 为何在教育中具有变革意义?
教育领域的问题往往复杂且多元,MAS能够引入多视角、跨学科的智能协作,助力实现个性化教学、深度学习和创新型课程设计。
- 什么是多智能体系统?
-
关键组成要素:
- 智能体(Agents):
具备自主决策能力、专长领域和任务目标的AI实体。例如:课程设计智能体、学科专家智能体、评估智能体、资源整合智能体等。 - 交互协议(Interaction Protocols):
规范智能体之间及其与用户互动的规则与流程(如系统提示词、任务分配机制),确保沟通高效、目标明确、输出一致。 - 目标(Objectives):
明确系统需达成的具体任务,如课程开发、学情分析、学术写作辅导等。目标应可量化、可追踪,并与学习成效紧密关联。
- 智能体(Agents):
-
智能体类型举例:
- 信息智能体(Informati