EXISTS、IN、NOT EXISTS、NOT IN的区别(ZT)

本文探讨了SQL中Exists与In的区别,特别是在不同表大小下的性能表现。通过一个实际案例展示了如何通过合理选择Exists或In来显著提高更新操作的速度,并讨论了Not Exists与Not In的逻辑差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

EXISTS、IN、NOT EXISTS、NOT IN的区别:


in适合内外表都很大的情况,exists适合外表结果集很小的情况。
exists 和 in 使用一例
===========================================================
今天市场报告有个sql及慢,运行需要20多分钟,如下:
update p_container_decl cd
set cd.ANNUL_FLAG='0001',ANNUL_DATE = sysdate
where exists(
select 1
from (
select tc.decl_no,tc.goods_no
from p_transfer_cont tc,P_AFFIRM_DO ad
where tc.GOODS_DECL_NO = ad.DECL_NO
and ad.DECL_NO = 'sssssssssssssssss'
) a
where a.decl_no = cd.decl_no
and a.goods_no = cd.goods_no
)
上面涉及的3个表的记录数都不小,均在百万左右。根据这种情况,我想到了前不久看的tom的一篇文章,说的是exists和in的区别,
in 是把外表和那表作hash join,而exists是对外表作loop,每次loop再对那表进行查询。
这样的话,in适合内外表都很大的情况,exists适合外表结果集很小的情况。

而我目前的情况适合用in来作查询,于是我改写了sql,如下:
update p_container_decl cd
set cd.ANNUL_FLAG='0001',ANNUL_DATE = sysdate
where (decl_no,goods_no) in
(
select tc.decl_no,tc.goods_no
from p_transfer_cont tc,P_AFFIRM_DO ad
where tc.GOODS_DECL_NO = ad.DECL_NO
and ad.DECL_NO = ‘ssssssssssss’
)

让市场人员测试,结果运行时间在1分钟内。问题解决了,看来exists和in确实是要根据表的数据量来决定使用。

请注意not in 逻辑上不完全等同于not exists,如果你误用了not in,小心你的程序存在致命的BUG:


请看下面的例子:
create table t1 (c1 number,c2 number);
create table t2 (c1 number,c2 number);

insert into t1 values (1,2);
insert into t1 values (1,3);
insert into t2 values (1,2);
insert into t2 values (1,null);

select * from t1 where c2 not in (select c2 from t2);
no rows found
select * from t1 where not exists (select 1 from t2 where t1.c2=t2.c2);
c1 c2
1 3

正如所看到的,not in 出现了不期望的结果集,存在逻辑错误。如果看一下上述两个select语句的执行计划,也会不同。后者使用了hash_aj。
因此,请尽量不要使用not in(它会调用子查询),而尽量使用not exists(它会调用关联子查询)。如果子查询中返回的任意一条记录含有空值,则查询将不返回任何记录,正如上面例子所示。
除非子查询字段有非空限制,这时可以使用not in ,并且也可以通过提示让它使用hasg_aj或merge_aj连接。

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/10742223/viewspace-257613/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/10742223/viewspace-257613/

import akshare as ak import pandas as pd def fetch_total_fund_data(): """获取涨停板封板资金数据""" zt_pool = ak.stock_zt_pool_em(date=datetime.now().strftime("%Y%m%d")) # 计算当日封板资金总和(亿元) total_fund = zt_pool['封板资金'].sum() / 100000000 # 万元转亿元 return total_fund import sqlite3 import schedule import time from datetime import datetime, timedelta def save_to_db(): """定时保存数据到SQLite数据库""" data = fetch_total_fund_data() conn = sqlite3.connect('total_fund.db') data.to_sql('total_fund_data', conn, if_exists='append', index=False) conn.close() print(f"{pd.Timestamp.now()} - 已保存{len(data)}条记录") # 设置定时任务(每15秒钟执行) schedule.every(15).seconds.do(save_to_db) while True: schedule.run_pending() time.sleep(1) import plotly.express as px from dash import Dash, dcc, html, Input, Output import dash_bootstrap_components as dbc # 创建Dash应用 app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) app.layout = html.Div([ dcc.Interval(id='live-update', interval=60*1000), # 每分钟更新 dcc.Graph(id='live-bar-chart'), dcc.Dropdown(id='stock-selector', multi=True, options=[], placeholder="选择对比股票"), dcc.Graph(id='history-chart') ]) @app.callback( [Output('live-bar-chart', 'figure'), Output('stock-selector', 'options')], [Input('live-update', 'n_intervals')] ) def update_live_chart(n): """更新实时封板资金柱状图""" conn = sqlite3.connect('zt_pool.db') df = pd.read_sql("SELECT * FROM zt_pool_data", conn) conn.close() latest = df.groupby('代码').last().reset_index() fig_bar = px.bar( latest.nlargest(10, '封板资金'), x='名称', y='封板资金', title='实时封板资金TOP10', color='封板成功率', color_continuous_scale='RdYlGn' ) options = [{'label': f"{row['名称']}({row['代码']})", 'value': row['代码']} for _, row in latest.iterrows()] return fig_bar, options @app.callback( Output('history-chart', 'figure'), [Input('stock-selector', 'value')] ) def update_history_chart(selected_codes): """更新历史对比折线图""" if not selected_codes: return px.scatter() conn = sqlite3.connect('zt_pool.db') query = f"SELECT * FROM zt_pool_data WHERE 代码 IN ({','.join(['?']*len(selected_codes))})" df = pd.read_sql_query(query, conn, params=selected_codes) conn.close() df['时间'] = pd.to_datetime(df['时间']) # 添加时间戳字段 fig_line = px.line( df, x='时间', y='封板资金', color='名称', title='封板资金历史趋势对比', markers=True, line_shape='spline' ) return fig_line if __name__ == '__main__': app.run_server(debug=True)帮我检查这段代码是否有问题
07-28
MySQL中rk_ns_temp1_bs 和rk_ns_bz_dz_tmp 都是千万级的大表,请帮我优化以下SQL,写成可以复用的存储过程: -- 更新 UPDATE rk_ns_temp1_bs t1 JOIN rk_ns_bz_dz_tmp t2 ON t1.ZJHM = t2.ZJHM SET t1.sfnshj = '疑似' WHERE t1.sfnshj <> '是' -- 排除已经是“是”的记录 AND t2.HJDZ_SSXQDM_BZ = '440115000000'; -- 地址临时表中户籍地址为“南沙区” -- 是否有效 -- 户籍表状态正常 是 状态注销 否 UPDATE rk_ns_temp1_bs t1 JOIN b_rk_stjh_hjrk_new t2 ON t1.ZJHM = t2.GMSFHM SET t1.zt = CASE WHEN t2.zt = '1' THEN '正常' WHEN t2.zt = '0' THEN '异常' ELSE t1.zt -- 其他状态保持不变 END where t1.sjly = '户籍表'; -- 非户籍表状态正常 是 状态注销 否 -- 先和已经有状态的数据比对,插入非户籍同身份证的状态数据 insert into rk_ns_temp1_bs select ZJLXDM,ZJHM,XM,'非户籍表','否', CASE WHEN t1.zt = '1' THEN '正常' WHEN t1.zt = '0' THEN '异常' else null END from b_rk_stjh_fhjrk_new t1 join rk_ns_temp1_bs t2; on t1.ZJHM = t2.ZJHM and t2.zt is not null; -- 更新非户籍身份状态 UPDATE rk_ns_temp1_bs t1 JOIN b_rk_stjh_fhjrk_new t2 ON t1.ZJHM = t2.ZJHM SET t1.zt = CASE WHEN t2.zt = '1' THEN '正常' WHEN t2.zt = '0' THEN '异常' ELSE t1.zt -- 其他状态保持不变 END where t1.sjly = '非户籍表'; -- 来穗人员表状态正常 是 状态注销 否 -- 先和已经有状态的数据比对,插入来穗同身份证的状态数据 -- 来穗建索引 CREATE INDEX idx_ls_zjhm ON VIEW_T_LDRY_ALL(zjhm); -- insert into rk_ns_temp1_bs select '01',ZJHM,XM,'来穗人员业务表','否', CASE WHEN t1.SFZX = '1' THEN '正常' WHEN t1.SFZX = '0' THEN '异常' else null END from VIEW_T_LDRY_ALL t1 join rk_ns_temp1_bs t2; on t1.ZJHM = t2.ZJHM and t2.zt is not null; -- 更新来穗身份状态 UPDATE rk_ns_temp1_bs t1 JOIN VIEW_T_LDRY_ALL t2 ON t1.ZJHM = t2.ZJHM SET t1.zt = CASE WHEN t2.SFZX = '0' THEN '正常' WHEN t2.SFZX = '1' THEN '异常' ELSE t1.zt -- 其他状态保持不变 END where t1.sjly = '来穗人员业务表';
03-08
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值