在人工智能领域,Transformer架构自问世以来,一直是自然语言处理(NLP)任务的中坚力量。然而,随着斯坦福大学、加州大学伯克利分校、加州大学圣迭戈分校和Meta的研究人员提出的全新架构——Test-Time Training(TTT),这一局面可能即将改变。TTT以其独特的机器学习模型,展现出超越传统RNN和Transformer的潜力,为AI语言模型的发展开启了新的篇章。
Transformer架构的局限
Transformer架构自2017年由Vaswani等人提出以来,便以其自注意力机制(Self-Attention)在处理序列数据方面展现出了革命性的优势。然而,随着模型规模的扩大和应用场景的复杂化,Transformer也逐渐暴露出一些局限性,如随着输入序列长度的增加,Transformer的计算复杂度呈二次方增长,这一特性导致资源消耗巨大。再有对于极长序列,Transformer难以捕捉长距离依赖关系,限制了其在某些任务上的表现,这些局限性都使Transformer面临着效率和效果的双重挑战。