等风来不如迎风去
AI领域初学者,AI+实时语音,AI+2/3D动画生成;AI+UE表演,AI+游戏NPC;音视频行业深耕多年,熟悉会议、直播、RTC,对在线教育、娱乐秀场等音视频端到端技术及系统架构有深入研究
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【motion】HumanML3D 的安装2:psbody-mesh安装成功
本文介绍了在搭建HumanML3D项目环境时遇到的依赖问题及解决方案。作者首先通过修改yaml文件成功创建了conda环境,但在安装过程中发现缺少body-visualizer、configer和psbody-mesh三个关键包。通过手动使用git命令安装这些依赖项,其中body-visualizer和configer安装成功,但psbody-mesh在构建过程中出现错误(exit status 1)。文中详细记录了完整的安装命令和终端输出,包括环境激活、依赖安装过程以及遇到的C++构建问题,为后续调试提供原创 2025-08-05 21:53:09 · 30 阅读 · 0 评论 -
【motion】HumanML3D 的安装1:环境搭建
该GitHub issue讨论HumanML3D项目的环境配置问题。用户尝试通过conda安装依赖包时出现下载进度停滞(显示0%),主要卡在mkl-2021.4.0(142.6MB)等大型包的下载环节。日志显示多个核心依赖如Qt、Python、pandas等均未能正常开始下载,可能由网络连接或镜像源问题导致。典型表现为conda环境创建过程中断,需检查网络配置或更换conda镜像源以解决依赖下载失败的问题。原创 2025-08-05 21:18:14 · 31 阅读 · 0 评论 -
【motion】标签检索设计 3:HumanML3D的四组件结构化标注格式
HumanML3D结构化标注格式解析 HumanML3D采用创新的四组件标注格式,巧妙融合人类可读性与机器处理需求: 结构化设计 原始描述:保持自然语言完整性 词性标注:提供语法结构信息(Penn Treebank标准) 时间窗口:精确标注动作起止时间(秒级精度) 语义表达优势 支持动作方向、速度、身体部位等细节标注 通过词性标签识别语法关系(如主谓宾结构) 时间标注实现动作序列的精确对齐 应用价值 为文本到动作生成提供丰富语义基础 便于动作检索与匹配("walks forward slowly&原创 2025-08-01 11:27:16 · 33 阅读 · 0 评论 -
【motIon】Text-to-Motion Retrieval: 迈向人体动作数据与自然语言联合理解
本文研究了文本到动作检索任务,对比了不同文本编码器(BERT+LSTM vs CLIP)和动作模型(BiGRU、UpperLowerGRU、DG-STGCN、MoT)在HumanML3D和KIT ML数据集上的性能。结果表明:1)CLIP文本编码器显著优于BERT+LSTM;2)DG-STGCN图卷积网络在多数指标上表现最优,证明其能有效建模人体骨骼时空结构;3)提出的MoT Transformer模型在CLIP基础上,在KIT ML数据集上取得R@10=42.6、med=14的最佳表现,表明其在保持语义理原创 2025-07-30 15:33:53 · 29 阅读 · 0 评论 -
【motion】文本检索动作数据的研究综述
motion text原创 2025-07-28 18:53:23 · 44 阅读 · 0 评论 -
【motion】windows 11 安装pixi fbx 和Momentum
pixi是一个跨平台的开发环境工具,支持Windows、macOS和Linux系统。安装简单,在Windows上可通过PowerShell命令一键安装(iwr -useb https://pixi.sh/install.ps1 | iex),自动下载最新版本并安装到用户目录。该工具由prefix.dev开发,旨在为开发者提供强大的跨平台开发环境支持。与同类工具相比,pixi具有更便捷的安装流程和跨平台兼容性特点。原创 2025-07-28 09:00:51 · 44 阅读 · 0 评论 -
【智能车】基于ESP8266 的方案
ESP8266智能小车项目摘要 本项目基于ESP8266(NodeMCU)开发智能小车控制系统,包含硬件搭建、固件烧录和远程控制功能实现。硬件采用4WD底盘结构,配备L293D电机驱动模块和红外寻迹传感器,支持PID控制算法优化运动性能。软件方面使用Arduino IDE开发,通过PyFlasher工具烧录固件,并实现网页端远程控制界面。项目还提供了寻迹、避障、遥控等多种功能演示视频和完整代码资源,适合物联网和智能硬件爱好者学习实践。 (150字)原创 2025-07-21 11:35:19 · 55 阅读 · 0 评论 -
【智能车】L298N 驱动模块
本文通过多张图片展示了不同场景下的技术应用示例,包括代码实现、系统架构和运行效果等可视化内容。这些图片涵盖了开发过程中的关键环节,为读者提供了直观的技术参考。虽然未包含详细文字说明,但图像内容本身已能清晰呈现技术实现的各个阶段,适合开发者快速理解相关技术要点和应用场景。原创 2025-07-21 11:34:44 · 48 阅读 · 0 评论 -
【langgraph】Context Engineering 上下文工程
写入上下文 - 将其保存到上下文窗口之外,以帮助代理执行任务。Selecting context - pulling it into the context window to help an agent perform a task.选择上下文 - 将其拉入上下文窗口以帮助代理执行任务。Compressing context - retaining only the tokens required to perform a task.压缩上下文 - 仅保留执行任务所需的标记。原创 2025-07-18 11:58:30 · 67 阅读 · 0 评论 -
【python】SSL错误深度分析和针对性解决方案
本文系统分析了SSL错误的发生机制和解决方案。首先通过分层架构说明SSL错误发生在传输层而非应用层,解释了为何传统HTTP重试策略无效。然后详细列举了SSL错误的四大类根本原因,包括服务器配置、网络环境、负载均衡和客户端问题。最后提出了针对性的四类解决方案:连接复用(最有效)、SSL配置优化、重试策略改进和网络层调优,特别强调了减少SSL握手次数和复用连接的重要性。原创 2025-07-16 10:34:40 · 99 阅读 · 0 评论 -
【MV】编排:每个 segment 都能找到一个“最合适”的动作组合
函数find_best_action_assignment通过枚举动作组合来优化目标时长的分配。它拆分动作序列为前缀和最后一个动作,计算剩余时长和调整量,过滤无效方案(剩余时长≥0.3s),并以绝对和相对调整量综合评分。最优方案是得分最低的有效组合,若无效则回退到单动作调整。该方法确保动作组合既满足目标时长,又最小化最后一个动作的变形,保持整体连贯性。例如,对于目标时长5.0s和动作序列[2.0,1.5,1.8,2.2],最优方案是使用前3个动作,仅需对最后一个动作压缩0.3s。原创 2025-07-04 09:00:52 · 43 阅读 · 0 评论 -
【MV】歌曲结构特征 分析
摘要:针对歌词内容与结构标签不匹配的问题,提出了三种解决方案:1)基于歌词重复性、叙述性等特征的规则判断;2)使用大模型进行语义分析,识别副歌、主歌等结构;3)混合策略结合规则与AI分析。推荐采用大模型方案,因其能更好理解歌词情感、重复模式等复杂特征。改进后的流程为:歌词内容→结构分析→结构标签→风格判断,有效解决原有匹配问题。原创 2025-07-04 08:58:05 · 61 阅读 · 0 评论 -
【MV】策略模式 vs规则引擎
策略模式是一种将算法与使用场景解耦的设计模式,通过封装不同解决方案为独立策略类,实现灵活切换。典型应用场景包括支付方式选择、冲突处理等。其核心结构包含:1)策略接口定义标准方法;2)多个具体策略实现不同算法;3)上下文管理器自动选择适用策略。相比if-else的硬编码方式,策略模式具有扩展性强(新增策略无需修改现有代码)、可维护性高(逻辑分离)、易于测试等优势,但会增加类数量。适用于存在多种解决方案(5-15种)、且可能动态变化的业务场景,如文中的载具冲突处理系统就包含11种独立处理规则。该模式本质上是通过原创 2025-07-02 22:45:17 · 93 阅读 · 0 评论 -
【MV】剧情演绎
情感表达与音乐完美融合原创 2025-07-08 00:00:00 · 83 阅读 · 0 评论 -
【python】langgraph环境安装的曲折办法
摘要: 安装CPU版PyTorch时遇到setuptools>=73.0.0依赖问题,原创 2025-06-30 21:34:58 · 104 阅读 · 0 评论 -
【docker】如何正确拉取langgraph-api
为Docker配置系统级代理的解决方案 文章介绍了当单纯设置环境变量无效时,如何为Docker配置系统级代理的方法。原创 2025-06-29 10:02:32 · 95 阅读 · 0 评论 -
【LangGraph 】“工作流”的核心就是围绕一个共享的 `State`
共享state原创 2025-06-28 09:12:25 · 56 阅读 · 0 评论 -
【MV】编排10:基于动作单元的动作编排方案2:实现
本文介绍了修复DeepSeek API输出为None问题的解决方案,主要包括:1)采用正确的API调用模式,直接获取文本内容;2)修复调用方式,确保处理API响应;3)增强错误处理机制,提供合理的默认值;4)保持系统兼容性。测试结果显示系统成功运行,生成了包含38个动作单元的编排结果,并详细分析了编排逻辑结构(四阶段处理流程、上下文感知等)、具体案例(开场器乐段、抒情人声段等)以及质量检查发现的问题(能量变化过大、动作类型失衡等)。最终系统输出JSON格式的编排结果,完整记录了各单元的动作描述和质量报告。原创 2025-06-26 00:30:00 · 40 阅读 · 0 评论 -
【MV】编排10:基于动作单元的动作编排方案1:探讨
舞蹈动作自动生成方案 本文提出一种基于结构化和标签化动作库的舞蹈动作自动生成方法。首先构建包含不同音乐段落(intro/verse/chorus等)和强度级别(low/medium/high)的多维度动作库,通过预定义映射关系为每个舞蹈单元自动推荐2-3个候选动作。系统支持两种生成方式:基于规则库的快速匹配和基于大模型的精细化生成。工作流程建议先通过规则库搭建基础框架,再针对关键段落使用GPT-4等大模型生成更贴合歌词的动作描述,最后输出为结构化表格供编舞人员调整优化。该方法兼顾效率与创意,可实现舞蹈动作的原创 2025-06-26 00:30:00 · 32 阅读 · 0 评论 -
【MV】编排9:基于时间线数据多层分段的动作单元报告和AI分析
本文介绍了一个Python音乐编排分析器的功能和应用。该工具能对音乐数据进行多维度分析,包括基础统计(单元数、时长比例)、结构分析(各部分分布)、强度/密度分析、歌词统计和时间分布等。分析报告显示示例歌曲采用典型流行结构,以叙事性verse为主(占66.7%时长),情感表达内敛(91%中等强度),歌词重复设计强化核心意象(主题句重复6次),单元时长高度一致(平均5.3秒)。分析器可指导音乐制作、表演编排等,如建议在verse部分重点编曲,利用5秒标准单元设计舞蹈动作,控制情感表达层次等。工具通过JSON数据原创 2025-06-25 00:45:00 · 29 阅读 · 0 评论 -
【MV】编排8:基于时间线数据多层分段避免过度拟合特定歌曲
这篇文章摘要如下: 动作建议系统优化方案 针对现有动作建议系统过度拟合的问题,提出两个优化方案: 完全移除动作建议(推荐方案) 保留音乐时间结构和特征数据 确保系统完全通用化 提供纯净的AI分析输入数据 通用音乐特征建议 仅基于音乐强度(intensity)和结构(structure)生成建议 避免涉及具体歌词语义 提供更中立的动作指导 两种方案都解决了原系统过度拟合特定歌曲的问题,使其具备更好的泛化能力。推荐采用方案1保持数据纯净性,为AI分析提供可靠基础。如需保留建议功能,方案2提供了一种中立客观的替代原创 2025-06-25 00:00:00 · 55 阅读 · 0 评论 -
【MV】编排7:基于时间线数据多层分段的AI增强与基础单元
基于基础单元,对歌词通过AI做情感分析原创 2025-06-25 00:45:00 · 28 阅读 · 0 评论 -
【MV】编排6:基于时间线数据多层分段改进对比
本文对比了两种音乐分段方案的优劣。现有方案采用分层处理逻辑(结构→节奏→歌词),存在歌词切断问题;改进方案则通过合并三种切分点(固定小节、节奏突变、歌词边界)一次性完成分段,最后增加同句合并环节。分析表明,改进方案具有四大优势:1)彻底解决歌词切断问题;2)算法复杂度更低;3)逻辑更直观;4)扩展性更好。关键改进在于将歌词边界从后期修复提升为前期约束,建议采用改进方案并提供了核心函数实现。原创 2025-06-25 00:45:00 · 35 阅读 · 0 评论 -
【MV】编排5:基于时间线数据多层分段逻辑分析
segment_structure函数通过三层分段策略将78个音乐小节转换为58个动作单元:第一层按音乐结构分组(intro/verse/chorus等),第二层通过节奏密度变化点和固定间隔点进行节奏分段,第三层根据歌词语义进一步细分。该转换保留了音乐结构和歌词完整性,同时突出节奏特征,生成平均3.47秒的合理动作单元,为舞蹈编排提供精准的时间点和内容特征支持。原创 2025-06-25 00:45:00 · 36 阅读 · 0 评论 -
【MV】编排4:基于时间线数据的密度突变检测和密度平滑算法
音乐密度突变检测与平滑算法摘要 该算法包含两个核心组件:密度突变检测和密度平滑处理。基础突变检测算法通过比较相邻小节的密度差值(默认阈值0.25)来识别显著变化点,但直接检测易受噪声干扰。为此引入三种平滑算法:简单移动平均(窗口3)、加权移动平均(中心点权重更高)和自适应平滑(根据局部变化动态调整窗口)。实际应用表明,平滑处理能有效过滤微小波动(如0.625→0.58)同时保留真实突变(如0.5→1.0)。参数调优建议:阈值0.25配合窗口3的轻度平滑可获得最佳效果,既能避免过度分割,又能保持音乐节奏特征。原创 2025-06-25 00:15:00 · 60 阅读 · 0 评论 -
【MV】编排3:基于时间线数据的多层次分段系统
本文提出了一种多层次音乐分段系统,采用三层递进结构设计(结构层/节奏层/歌词层),结合密度突变检测和AI情感分析。该系统能自动生成6-7个大段、15-20个中段和30-40个动作单元,每个单元包含精确时间、强度等级和动作建议。通过对比两种实现方案,作者推荐采用简洁的函数式编程方案(约100行代码),该方案在代码可读性、执行效率和内存占用方面表现更优,仅需添加密度平滑和强度分类两个小优化即可达到最佳效果。最终方案平衡了技术精确性与艺术表现需求,是解决音乐动作编排问题的理想选择。原创 2025-06-25 00:15:00 · 59 阅读 · 0 评论 -
【MV】编排2:基于时间线数据的动作编排策略
你的多层次分段策略非常棒!这是一个既科学又实用的方案。原创 2025-06-25 00:45:00 · 41 阅读 · 0 评论 -
【MV】编排0:调研与音乐动作时间线相关的高质量开源项目
调研原创 2025-06-19 12:45:16 · 38 阅读 · 0 评论 -
【MV】编排1:歌的结构、节奏和歌词都精细地拆解、对齐到了「小节」(measure)层面
这篇摘要介绍了如何利用JSON数据结构对歌曲进行精细的动作编排规划。主要内容包括: JSON文件将歌曲分解为小节(measure)级别,包含结构划分、节奏分析和歌词对齐信息。 数据可用于: 结构化分段(intro/verse/chorus等) 创建小节时间线 节奏密度分析 歌词与小节关联 动作划分策略: 按"结构+歌词"分组 固定小节数分段 基于节奏密度变化 结合歌词语义 提供了混合策略的示例流程和Python实现思路,包括数据结构定义和时间线生成器类。 摘要展示了如何利用歌曲的精细数据原创 2025-06-19 11:22:00 · 185 阅读 · 0 评论 -
【PC-Dance】M2D-Align : 使用交叉熵损失(Cross-Entropy Loss)学习风格
摘要: 交叉熵损失(Cross-Entropy Loss)是深度学习中用于分类任务的核心损失函数,通过量化预测概率与真实标签的差异来优化模型。在M2D-Align中,交叉熵损失($L_{\text{cls}}$)与欧氏距离损失结合使用,前者强制模型正确分类音乐-舞蹈对的风格类别,后者确保同一对的风格嵌入在向量空间中靠近。这种组合使嵌入空间兼具对齐性和结构性:同类样本聚类,异类分离。交叉熵的数学形式为$-\log(\hat p_j)$($\hat p_j$为真实类别概率),对错误预测施加对数级惩罚,推动模型快原创 2025-06-23 00:45:00 · 41 阅读 · 0 评论 -
【舞蹈】PC-Dance:姿势可控的音乐驱动舞蹈合成
《PC-Dance:姿势可控的音乐驱动舞蹈合成》提出了一种新型的音乐驱动舞蹈生成系统。该系统包含两个核心模块:音乐-舞蹈对齐嵌入网络(M2D-Align)和姿势可控舞蹈合成(PC-Syn)。M2D-Align采用自监督学习实现音乐节奏与舞蹈动作的精准对齐,并通过风格嵌入模块保持音乐与舞蹈的风格一致性。PC-Syn则构建自适应运动图(AMGC),通过图优化算法在保持动作多样性的同时生成符合音乐的舞蹈序列。整个系统能够根据输入音乐和指定的锚点姿势,生成既符合音乐节奏又满足姿势控制需求的舞蹈动作。该方法在保证生成原创 2025-06-23 00:00:00 · 47 阅读 · 0 评论 -
【舞蹈】编排:如何对齐拍子并让小节倍数随BPM递减
本文分析了音乐编舞中最小单位划分的代码逻辑,指出了当前方案在强拍对齐、节拍细分和时间点选择上的不足。研究发现,现有代码仅考虑小节第一拍(downbeat),忽略了其他强拍(如4/4拍的第3拍),且时间间隔处理过于简化。文章提出了改进建议:1)精确提取所有强拍;2)结合BPM动态调整时间间隔;3)同步歌词重音与强拍;4)优化过渡段落处理;5)建立综合权重评分系统。特别强调次强拍对动作连贯性和音乐表现力的重要性,并提供了中文歌词重音识别与强拍对齐的具体方法。这些改进将使编舞更贴合音乐节奏,提升艺术表现力。原创 2025-06-22 00:00:00 · 82 阅读 · 0 评论 -
【FineDance】舞蹈多样性的得来
摘要 本文介绍了FineDance系统中的两个核心模块:GaussianDiffusion和Genre&Coherence检索模块(GCRM)。GaussianDiffusion采用DDIM加速采样策略,通过减少采样步数(从1000步降至50-100步)来提升生成效率,同时保持舞蹈质量。GCRM则从生成的多个舞蹈片段中筛选出风格匹配且连贯的片段进行拼接。系统采用两阶段流程:扩散模型作为创作引擎生成候选舞蹈,检索模块优化最终输出。此外,代码展示了音频切片与特征提取的实现,包括节奏检测、MFCC等特征计原创 2025-06-22 00:00:00 · 64 阅读 · 0 评论 -
【FineDance】对齐小节 vs 对齐强拍
本文探讨了音乐中小节与强拍的关系及在舞蹈编排中的应用。主要内容包括:1)小节分界线通常是强拍,但并非所有强拍都是小节线(如4/4拍有第1、3两个强拍);2)对齐小节(按完整音乐结构切分)比单纯对齐强拍更利于保持舞蹈短语的完整性;3)建议采用多小节分组(如4小节一组)的编排方式,既能保持音乐结构,又使舞蹈片段长度适中;4)提供了Python代码示例,展示如何通过检测小节位置实现智能音频切分。文章强调对齐音乐结构的重要性,为舞蹈与音乐的精准配合提供了实用解决方案。原创 2025-06-21 00:30:00 · 21 阅读 · 0 评论 -
【FineDance】舞蹈生成网络:Transformer/FiLM/GaussianDiffusion/FK/GCRM原理
FineDance项目核心技术解析 核心架构 FineDance采用基于扩散模型的舞蹈生成网络(FDGN),包括: 身体专家子网:生成躯干/四肢动作 手部专家子网:处理精细手势 Refine融合网络:整合两部分动作 关键技术解析 Transformer序列模型(DanceDecoder):通过自注意力确保动作连贯性,交叉注意力将音乐特征融入舞蹈生成 FiLM特征调制层:根据扩散阶段调整动作生成策略(早期重整体节奏,后期重细节) 骨骼系统对比: SMPL:24个身体关节(不含手指和面部) SMPL-X:扩展至原创 2025-06-21 00:45:00 · 49 阅读 · 0 评论 -
【FineDance】一次训练后得到音乐和动作数据切片 (6790个文件)
摘要:本文记录了FineDance舞蹈生成模型的训练过程。通过HuggingFace Accelerate框架启动训练,使用Transformer架构处理音乐-舞蹈序列关系,包含多任务损失函数。测试训练完成1个epoch,生成初步模型文件train-1.pt,后续可进行数据切片和舞蹈生成步骤,但由于训练周期不足,生成质量可能较粗糙。建议增加训练epoch至100轮以获得更好效果。 关键词:FineDance、舞蹈生成、Transformer、扩散模型、训练过程原创 2025-06-21 00:15:00 · 52 阅读 · 0 评论 -
【FineDance】调试生成视频debug_render_process.py
文章摘要: 问题诊断与修复方案 在服务器无头环境中发现视频生成失败问题,根源在于matplotlib默认需要图形界面后端。调试发现: 关键检查结果: ✅ 音频文件(144.wav)存在 ✅ PKL动作数据文件生成正常 ❌ 视频文件缺失 问题本质: 服务器缺少图形显示环境导致matplotlib无法渲染图像 解决方案: 设置MPLBACKEND=Agg环境变量 修改脚本强制使用非交互式后端 提供完整修复步骤脚本 长期方案建议: 将MPLBACKEND=Agg加入.bashrc永久生效 该方案已通过测试脚本验证原创 2025-06-21 00:30:00 · 25 阅读 · 0 评论 -
【FineDance】数据预处理和训练的完整流程
FineDance训练流程需要先进行数据预处理,主要包括音频特征提取和动作数据转换。音频特征已预处理完成,只需运行pre_motion.py处理SMPLH动作数据,转换为训练所需格式。训练时使用accelerate launch启动,模型会同时利用音频特征和预处理后的动作数据。生成阶段需运行slice_music_motion.py切分数据,再使用generate_all.py生成舞蹈动作。训练代码采用扩散模型架构,通过多损失函数(动作重构、速度、前向运动学和脚部接触约束)优化生成效果,并采用EMA机制稳定原创 2025-06-21 00:30:00 · 41 阅读 · 0 评论 -
【FineDance】vis.py 硬编码路径的修复
文章摘要: 该脚本旨在修复Python视觉处理脚本(vis.py)中的硬编码路径问题。主要修复内容包括:1)替换SMPLX模型文件路径;2)更新FFmpeg路径为用户的本地路径;3)注释原作者测试数据路径;4)处理其他可能的硬编码路径。脚本还提供系统依赖检查功能,包括验证FFmpeg路径是否正确、检查必备Python包(pytorch3d、librosa等)是否安装。该修复方案采用先备份原文件的方式确保安全,并在修复过程中输出详细的进度反馈。用户可根据实际需求调整关键路径变量。原创 2025-06-21 00:15:00 · 44 阅读 · 0 评论 -
【FineDance】Batch Size对训练的影响分析
本文探讨了舞蹈生成模型的训练参数设置,重点分析了batch_size和epochs的选择。原论文使用batch_size=400需20-30GB显存,而RTX 4070建议调整为4-8。小batch_size虽训练更慢但显存友好,扩散模型对此相对不敏感。推荐采用阶段性训练策略:先试运行batch_size=2/epochs=10,验证后正式训练batch_size=4/epochs=100,显存充足时可升至8。100轮训练约需30-50小时,可观察损失函数判断收敛情况。关键是通过合理参数配置平衡显存限制与训原创 2025-06-21 00:00:00 · 49 阅读 · 0 评论