【博学谷学习记录】超强总结,用心分享|大数据之SparkSql

SparkSQL是用于处理大规模结构化数据的工具,它支持SQL和编程接口,与Hive兼容并能提升效率。SparkSQL的特点包括融合性、统一的数据访问和Hive的兼容性。与Hive相比,SparkSQL基于内存计算,更快速,且提供了更灵活的编程模型。入门案例展示了如何创建SparkSession以及查询数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Spark SQL基本概念

1.1 了解什么是Spark SQL

​ Spark SQL是Spark多种组件中其中一个, 主要是用于处理大规模的结构化数据

什么是结构化数据:
	一份数据集, 每一行都是有固定的列, 每一列的类型都是一致的, 我们将这种数据集称为结构化的数据

例如: MySQL表数据
1 张三 20
2 李四 18
3 王五 21

为什么要学习Spark SQL呢?

1- 会SQL的人, 一定比会大数据的人多
2- Spark SQL既可以编写SQL语句, 也可以编写代码, 甚至支持混合使用
3- Spark SQL 和 Hive进行集成, 集成后, 可以替换掉Hive原有MR的执行引擎, 提升效率

Spark SQL的特点:

1- 融合性: 既可以使用标准SQL语言 也可以使用代码, 同时也支持混合使用

2- 统一的数据访问: 可以通过Spark SQL来对接不同的数据库, 通过统一的API即可操作多个数据库

3- HIVE的兼容性: Spark SQL 可以和 HIVE进行整合, 整合后替换执行引擎为Spark,核心: 基于HIVE的MetaStore, 替换HiveServer2

4- 标准化连接: Spark SQL 也支持 JDBC/ODBC的连接方式
说明: 
	Spark 2.0以后, 整个内部的数据类型只有一个DataSet类型
	
	DataSet是一个有泛型约束的dataFrame对象,但是呢, 我们后续通过Python来操作, Python不支持泛型约束,所以为了能够支持在类似于Python这种不支持泛型的语言中使用Spark SQL, 所以Spark SQL在不同语言的客户端的API上都保留DataFrame的API, 这样对于无泛型约束的语言依然是可用的, 但是一旦开始运行, 其内部最终也会转回为DataSet类型

1.2 Spark SQL与Hive异同

相同点:

1- 都是分布式计算的引擎
2= 都可以处理大规模的数据
3- 都可以基于yarn集群运行

不同点:

1- Spark SQL是基于内存计算, 而Hive SQL是基于磁盘来进行计算的
2- Spark SQL没有元数据管理的服务(自己维护),而Hive SQL是有metastore的元数据管理服务项
3- Spark SQL底层执行Spark RDD程序, 而Hive SQL 底层执行MR
4- Spark SQL可以编写SQL 也可以编写代码, 但是Hive SQL仅能编写SQL语句

1.3 Spark SQL的数据结构对比

在这里插入图片描述

说明:
	pandas的df: 二维表, 处理单机化数据
	Spark Core:处理任何的数据结构, 处理大规模的分布式数据
	Spark SQL: 二维表, 处理大规模的分布式数据

在这里插入图片描述

RDD: 存储直接就是对象, 比如在图中, 存储就是一个Person的对象, 但是里面有什么数据靠内心, 不太清楚

DataFrame: 将Person中各个字段的数据, 进行格式化存储,形成一个dataFrame,可以直接看到数据

dataSet: 将Person对象中数据都按照结构化的方式存储好, 同时保留对象的类型,从而知道来源于一个Person的对象

由于Python不支持泛型,所以无法使用DataSet类型, 客户端仅支持dataFrame类型

2. Spark SQL的入门案例

2.1 Spark SQL的统一入门

​ 从Spark SQL开始, 需要更换核心对象, 因为SparkContext对象是SparkCore核心对象, 无法支持Spark SQL编写的, Spark框架专门提供了一个用于支持Spark SQL的编程入口类: SparkSession, 此类同时也可以获取原有的SparkContext对象

如何构建一个SparkSession对象呢?

from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
import os

# 锁定远端环境, 确保环境统一
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    print("演示: 如何创建SparkSession核心对象")

    # 1. 创建SparkSession对象
    spark = SparkSession.builder.appName('create_spark_session').master('local[*]').getOrCreate()


    # 2. 获取SparkContext对象
    sc = spark.sparkContext


    # 3. 执行相关的操作: Spark SQL  还是 Spark RDD

    # 4. 释放资源
    sc.stop()
    spark.stop()

2.2 Spark SQL的入门案例

需求: 有如下结构化数据, 要求查询在北京地区的学员有那些?

数据集:

1,张三,男,北京
2,李四,女,上海
3,王五,女,北京
4,赵六,男,广州
5,田七,男,北京
6,周八,女,杭州

代码实现:

from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
import os

# 锁定远端环境, 确保环境统一
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    print("Spark SQL的入门案例")

    # 1. 创建SparkSession对象
    spark = SparkSession.builder.appName('spark_sql_init').master('local[*]').getOrCreate()

    # 2.读取外部文件数据
    """
        path: 指定读取数据的路径
        header: 数据集是否含有头信息,默认为False(如果为true, 会将数据集第一行设置为表头)
        inferSchema: 是否需要自动识别每一列的数据类型,默认为false 
        sep: 设置字段与字段之间的分隔符号, 默认为 csv为 逗号
    """
    df = spark.read.csv(
        path='file:///export/data/workspace/ky06_pyspark/_03_SparkSql/data/stu.txt',
        header=True,
        inferSchema=True,
        sep=' ',
        encoding='UTF-8'
    )

    #df.printSchema() # 查看字段结构信息
    #df.show() # 显示数据, 默认显示前20行

    # 3- 执行相关的操作:
    # 3.1 使用SQL 的形式
    df.createTempView('stu')

    df_res = spark.sql("""
        select
            *
        from stu where address = '北京'
    """)

    df_res.show()

    # 3.2  代码的形式
    df.where("address = '北京'").show()

    # 3- 释放资源
    spark.stop()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值