用 LangChain 构建基于资料库的问答机器人(三):ReAct

本文介绍了ReAct方法在构建基于LLM的问答机器人中的应用,通过思考、行动和观察的循环,提升GPT等模型的回答质量。ReAct允许LLM决定何时及如何使用外部工具,解决仅依赖prompt的局限性,与人类思考过程相似。LangChain则简化了这一流程,通过代理封装复杂步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是 Jambo。我们已经学习了如何使用 LangChain 的一些基本功能,解下我们就应该要结合这些功能来做一些复杂的东西了。但在这之前,为了让同学们更好的理解 LangChain 在这其中做了什么,我想先介绍一下关于 GPT 使用方面的一些知识。

在 ChatGPT 开放之初,除了各大公司在 AI 算法方面竞争,还有许多人在研究如何仅通过修改 prompt 就能让 GPT-3 做出更好的回答,这种方法被称为“提示工程(Prompt Engineering)”。如果把 LLM 比喻成一个拥有一般常识的大脑,那么提示工程就是在教它如何思考,从而更有效的结合知识得出答案。像 AutoGPT 就是这样,他通过精心设计的 prompt,就能让 GPT-4 自行完成各种任务。为了让同学们了解这其中的思想,我们先从“思维链”开始介绍。

思维链(Chain of Thought)

思维链(Chain of Thought)在 ChatGPT 推出后不久就被提出,具体来说就是通过手动编写示例的方式让 GPT-3 将问题的思考过程也生成出来,通过这种方式 GPT-3 回答的效果会有大幅提升。就像我们在写比较复杂的计算题,将过程一步一步写出来的正确率会比直接写出答案要高。

Alt text

后来有人发现,只需要加上 “Let’s think step by step.” 这一魔法提示,就能达到一样的效果,还不需要写示例。并且他还在这基础上,额外让 GPT 根据它前面附带思考过程的回答,再总结出一个更简洁的答案,相当于把思考过程隐藏起来。

Alt text

我这里想强调的是,我们用 LLM 构建应用时,完全可以在输出最终答案前多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值