编译catboost

博客内容涉及使用VS2017遇到cl.exe找不到的错误,以及解决方法,包括修改.vcxproj文件,替换特定程序,调整protoc.exe参数,并解决PYTHONHASHSEED相关问题。此外,还涉及了Python源码的编码修改,如将open函数的默认编码改为UTF-8。同时提到了需要将某些文件移动到指定目录下,以及对多个.py文件进行的代码更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

运行ya.bat,提示找不到cl.exe
(我用的是vs2017)

msvs\Projects 目录下的.vcxproj
“python” 替换成python.exe的路径

生成的 f2c.exe 和 ragel6.exe 不能用
这里下载,替换
f2c
ragel

.vcxproj 里的 protoc.exe 参数
去掉 “-I=” “$(SolutionDir)…/contrib/libs/protobuf/src”

把"$(VC_ExecutablePath_x64_x64)\ml64.exe"之前的
“python” “$(SolutionDir)…/build/scripts/fix_msvc_output.py” “ml” 去掉

还有其它的问题
PYTHONHASHSEED是什么?

把\library\cpp\tokenizer目录下的.rl文件
放到\msvs目录下

我用的python是3.6的版本,要改以下几个.py

py_compile.py

open(in_fname, 'r') 改成 
open(in_fname, 'r', encoding='UTF-8')

configure_file.py

print 后面的参数加上()

f2c.py

open(args.input, 'r') 改成
open(args.input, 'rb')

print >> ... 改成
sys.stderr.write('f2c failed: %s, %s' % (stderr, ret))
sys.stderr.write(stderr)

'Error'改成
b'Error'

f.write(stdout)改成
f.write(str(stdout, encoding = "utf8"))

subprocess32.py

except 后面的,e 改成 as e
0x80000000L 改成 0x80000000
### 使用 CatBoost 库在 Java 中的应用 要在 Java 中使用 CatBoost,可以通过 JNI (Java Native Interface) 或者通过 Python 的桥接来实现。以下是详细的说明: #### 1. 安装 CatBoost 并配置环境 为了能够在 Java 中调用 CatBoost 功能,首先需要安装 CatBoost 和其支持的绑定工具。可以按照官方文档中的指导完成安装过程[^2]。 ```bash pip install catboost ``` 如果计划直接从 C++ 调用,则需下载并编译 CatBoost 的源码版本,并确保已正确设置 `JAVA_HOME` 环境变量以及 JDK 工具链路径[^3]。 #### 2. 配置 SWIG 支持 由于引用中提到 SWIG 编译错误,这表明可能缺少必要的模板文件 (`swig.swg`, `python.swg`)。解决方法如下: - 确认 SWIG 版本是否最新; - 将这些缺失的标准头文件复制到指定目录下或者调整 `-I` 参数指向正确的 SWIG 模板位置[^4]。 对于 Java 绑定生成而言,命令类似于下面这样: ```bash swig -java -package com.example.catboost -outdir src/main/java/com/example/catboost -o capng_wrap.c ../src/capng_swig.i ``` 注意替换实际项目所需的包名和输出路径。 #### 3. 加载模型与预测示例代码 一旦成功构建了 JNI 接口类库之后,在 Java 程序里就可以加载预训练好的 CatBoost 模型来进行推理操作了。这里给出一段简单的例子展示如何读取二进制格式 (.cbm 文件扩展名),并对新数据执行分类/回归任务。 ```java import ru.yandex.catboost.CatBoostJNI; import ru.yandex.catboost.Pool; public class Main { public static void main(String[] args) throws Exception { String modelPath = "path/to/model.cbm"; // Initialize the native library. System.loadLibrary("catboost_jni"); long poolHandle = Pool.createPoolFromFiles( new String[]{"test_data.csv"}, "", false, null); float[][] predictions = CatBoostJNI.applyModel(modelPath, poolHandle); for(int i=0;i<predictions.length;i++) { System.out.println(predictions[i][0]); } Pool.deletePool(poolHandle); } } ``` 上述片段展示了基本的工作流程:初始化 JNI 层面的支持;创建测试集对应的内存表示形式(即池对象);最后利用保存下来的机器学习模型得到每条记录上的估计值[^5]。 #### 总结 尽管存在一些技术挑战比如跨平台兼容性和性能优化等问题,但是借助于强大的开源社区力量加上详尽的技术资料帮助开发者克服困难顺利集成先进算法至自己的应用程序当中去。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值