深度学习模型复现——随机数种子设置相关

本文解析了一个来自CSDN的博客文章,虽然原始内容未直接提供,但该文可能涉及软件开发、编程技巧等方面的知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源:https://blog.csdn.net/weixin_40400177/article/details/105625873

### 设置随机数种子以确保实验可复现性 在深度学习项目中,为了使实验结果具有可复现性,通常需要固定多个组件中的随机数种子。对于PyTorch而言,这涉及到Python内置的`random`模块、NumPy库以及PyTorch自身的随机化机制。 #### Python 和 NumPy 的种子设置 通过调用`random.seed()`函数可以控制Python标准库产生的伪随机序列;而利用`np.random.seed()`则能管理由NumPy生成器创建的数据流。这两者共同作用于数据预处理阶段可能引入的变化因素之外的部分[^1]。 ```python import numpy as np import random def set_basic_seeds(seed_value=42): random.seed(seed_value) np.random.seed(seed_value) ``` #### PyTorch 随机性的全面锁定 除了上述措施外,在使用PyTorch时还需要进一步配置其内部状态来达到完全一致的行为模式: - `torch.manual_seed()`: 影响CPU上的所有操作。 - `torch.cuda.manual_seed_all()`: 当存在多GPU环境时,此命令会初始化每一个设备对应的随机引擎。 - 对于CUDA卷积实现,默认情况下可能会采用非确定性的算法优化性能。可以通过设置`torch.backends.cudnn.deterministic=True`强制选择决定论路径,尽管这样做可能导致速度下降。 综上所述,完整的PyTorch随机性冻结方案如下所示: ```python import torch def setup_torch_seeds(seed_value=42): torch.manual_seed(seed_value) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed_value) torch.backends.cudnn.deterministic = True ``` 值得注意的是,即使采取了这些预防措施,某些外部依赖项(如第三方扩展包)仍可能存在未被覆盖到的地方,因此建议开发者尽可能简化开发环境中涉及的技术栈,并仔细阅读所使用的各个软件包文档说明。 关于TensorFlow的具体做法不在当前参考资料范围内,但在概念层面两者相似,即都需要针对各自平台特有的API进行相应的参数调整以达成全局范围内的随机行为一致性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值