使用LangChain构建智能会话机器人:从基础到进阶
在这篇文章中,我们将探讨如何使用LangChain设计和实现一个基于大语言模型(LLM)的聊天机器人。这个机器人不仅能够进行对话,还可以记住先前的互动,从而提供更加个性化的用户体验。
引言
随着人工智能技术的发展,聊天机器人已经成为许多应用中的关键组件。本篇文章旨在指导您如何使用LangChain库从零开始创建一个智能聊天机器人。如果您是AI和编程的新手,您将学到基础知识;如果您是专业人士,这篇文章将向您展示如何进一步优化和扩展您的机器人功能。
主要内容
1. 环境设置
在开始之前,请确保您已经安装了Jupyter Notebook,这是一个非常适合学习和实验LLM系统的环境。您可以在这里找到安装指南。
接下来,安装LangChain库:
pip install langchain
# 或者使用Conda
conda install langchain -c conda-forge
2. 使用LangChain构建基本聊天模型
我们从使用LangChain直接调用语言模型开始。LangChain支持多种语言模型,如OpenAI、Anthropic、Azure等。以下是使用OpenAI模型的示例:
import os
from getpass import getpass
from langchain_openai import ChatOpenAI
os.environ["OPENAI_API_KEY"] = getpass("Enter your OpenAI API key: ")
model = ChatOpenAI(model="gpt-3.5-turbo")
response = model.invoke([HumanMessage(content