最小生成树 Prim算法 Kruskal算法

本文详细解析了Prim算法在构造加权连通图的最小生成树过程中的应用。从选择初始顶点开始,逐步介绍如何根据边的权重选择最近的顶点,直至所有顶点都被包含在内,最终形成最小生成树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Prim算法: 

Kruskal算法

图例说明不可选可选已选(Vnew)
 

此为原始的加权连通图。每条边一側的数字代表其权值。---

顶点D被随意选为起始点。顶点ABEF通过单条边与D相连。A是距离D近期的顶点。因此将A及对应边AD以高亮表示。C, GA, B, E, FD
 

下一个顶点为距离DA近期的顶点。BD为9,距A为7。E为15。F为6。因此,FDA近期,因此将顶点F与对应边DF以高亮表示。

 

 

C, GB, E, FA, D
算法继续反复上面的步骤。距离A为7的顶点B被高亮表示。

 

 

CB, E, GA, D, F
 

在当前情况下,能够在CEG间进行选择。CB为8,EB为7,GF为11。E近期。因此将顶点E与对应边BE高亮表示。

 

 

C, E, GA, D, F, B
 

这里。可供选择的顶点仅仅有CGCE为5。GE为9,故选取C,并与边EC一同高亮表示。

 

 

C, GA, D, F, B, E

顶点G是唯一剩下的顶点,它距F为11,距E为9,E近期。故高亮表示G及对应边EGGA, D, F, B, E, C

如今,全部顶点均已被选取,图中绿色部分即为连通图的最小生成树。在此例中,最小生成树的权值之和为39。A, D, F, B, E, C, G
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值