算法-Prim算法

本文详细介绍了一种经典的图算法——Prim算法,该算法用于在加权无向图中找到一棵包含所有顶点的最小生成树。通过创建图对象和最小生成树对象,利用邻接矩阵表示图的结构,演示了Prim算法的具体实现过程。代码示例清晰展示了如何从给定的顶点开始,逐步选择权重最小的边来构建最小生成树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

package com.chb.Prim;

import java.util.Arrays;

public class Prim {
	public static void main(String[] args) {
		//测试看看图是否创建ok
		char[] data = new char[]{'A','B','C','D','E','F','G'};
		int verxs = data.length;
		//邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
		int [][]weight=new int[][]{
		            {10000,5,7,10000,10000,10000,2},
		            {5,10000,10000,9,10000,10000,3},
		            {7,10000,10000,10000,8,10000,10000},
		            {10000,9,10000,10000,10000,4,10000},
		            {10000,10000,8,10000,10000,5,4},
		            {10000,10000,10000,4,5,10000,6},
		            {2,3,10000,10000,4,6,10000},};
		            
		  //创建MGraph对象
		  Graph graph = new Graph(verxs);
		  //创建一个MinTree对象
	        MinTree minTree = new MinTree();
	        minTree.createGraph(graph, verxs, data, weight);
	        //输出
	        minTree.show(graph);
	        minTree.prim(graph, 1);
	}
	
}
//创建最小生成树->村庄的图
class MinTree {
	public void createGraph(Graph graph, int verxs, char data[], int[][] weight) {
		for (int i = 0; i < weight.length; i++) {
			graph.data[i] = data[i];
			for (int j = 0; j < verxs; j++) {
				graph.weight[i][j] = weight[i][j];
			}
		}
	}
	//编写prim算法,得到最小生成树
	public void prim(Graph graph, int v) {
		//visited[] 标记结点(顶点)是否被访问过
		int visited[] = new int[graph.verxs];
		//visited[] 默认元素的值都是0, 表示没有访问过
//		for(int i =0; i <graph.verxs; i++) {
//			visited[i] = 0;
//		}
		
		//把当前这个结点标记为已访问
		visited[v] = 1;
		//h1 和 h2 记录两个顶点的下标
		int h1 = -1;
		int h2 = -1;
		int minWeight = 10000; //将 minWeight 初始成一个大数,后面在遍历过程中,会被替换
		for(int k = 1; k < graph.verxs; k++) {//因为有 graph.verxs顶点,普利姆算法结束后,有 graph.verxs-1边
			//这个是确定每一次生成的子图 ,和哪个结点的距离最近
			for(int i = 0; i < graph.verxs; i++) {// i结点表示被访问过的结点
				for(int j = 0; j< graph.verxs;j++) {//j结点表示还没有访问过的结点
					if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
						//替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
						minWeight = graph.weight[i][j];
						h1 = i;
						h2 = j;
					}
				}
			}
			//找到一条边是最小
			System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
			//将当前这个结点标记为已经访问
			visited[h2] = 1;
			//minWeight 重新设置为最大值 10000
			minWeight = 10000;
		}
	}
	
	//显示图的邻接矩阵
	public void show(Graph graph) {
		for (int[] list : graph.weight) {
			System.out.println(Arrays.toString(list));
		}
	}
}

class Graph{
	int verxs; //表示图的节点个数
	char[] data;//存放结点数据
	int[][] weight; //存放边,就是我们的邻接矩阵
	
	public Graph(int verxs) {
		super();
		this.verxs = verxs;
		this.data =new char[verxs];
		this.weight = new int[verxs][verxs];
	}
}

运行结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值