
深度学习相关
文章平均质量分 95
MATLAB卡尔曼
所有代码如运行有问题,可私信博主
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【MATLAB例程】LSTM的多输入多输出回归预测代码与解析,通过训练数据估计三轴位置,并生成误差输出【附下载链接】
本文提出一种多维LSTM回归预测模型,用于多传感器数据融合与真值估计。模型采用双层LSTM架构(30/15单元)结合动态学习率策略,有效提取时序特征并降低噪声影响。实验结果表明,该方法在三维位置预测中表现优异,误差显著低于单变量模型。程序包含完整数据生成、标准化预处理、模型训练及三维可视化模块。该方案适用于工业场景中的多源传感器数据融合任务,实测误差降低24.5%-78.8%,与航空发动机预测中的Bi-LSTM设计理念相印证。原创 2025-06-19 10:44:17 · 1138 阅读 · 0 评论 -
【LSTM多输入单输出】基于长短期记忆网络的多输入单输出回归预测的MATLAB例程,附下载链接
本文介绍了一个基于LSTM网络的多输入单输出回归预测模型。通过模拟工业传感器数据,构建包含非线性组合的目标值,并采用Z-score标准化处理。模型使用LSTM层提取时序特征,配合Dropout防止过拟合,采用Adam优化器训练。结果显示:1) 预测值与真实值趋势接近;2) 误差曲线波动稳定;3) 误差呈正态分布;4) 训练过程收敛良好。评估指标包括RMSE、MAE和R²,验证了模型有效性。原创 2025-06-19 10:42:37 · 1090 阅读 · 0 评论 -
深度学习中的损失函数(Loss)计算方法解析
在深度学习中,损失函数(Loss Function)是衡量模型预测与真实值差异的核心工具,其计算方式根据任务类型和优化目标的不同而有所差异。原创 2025-02-25 13:32:39 · 649 阅读 · 0 评论