自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

MATLAB卡尔曼的博客

分享关于导航、滤波的方法和MATLAB代码

  • 博客(757)
  • 资源 (11)
  • 收藏
  • 关注

原创 《MATLAB定位与滤波例程》专栏目录,持续更新……

本专栏针对动态目标定位时,往往有轨迹的滤波需求,因此给出TOA/AOA/RSSI等定位方法与EKF/UKF/CKF等滤波方法结合的matlab例程,弥补另一个专栏《MATLAB定位程序与详解》只提供静态、单点定位方法的缺陷。

2025-03-15 01:13:46 282 1

原创 《MATLAB创新性滤波算法》专栏目录,持续更新中……

MATLAB创新性滤波算法》专栏旨在分享具有一定创新性的滤波方法,并配有适当的MATLAB例程供读者参考。为了保证一定的新颖性、创新性,在编辑时耗费了大量的时间和精力,因此设置为付费专栏,以下是专栏的目录。

2024-12-30 08:43:07 708 1

原创 《IMM交互式多模型滤波MATLAB实践》专栏目录,持续更新……

【逐行注释】基于CV/CT模型的IMM|MATLAB程序|源代码复制后即可运行,无需下载CV/CA双模型的IMM例程(MATLAB,基于两个模型的EKF),附源代码可直接复制粘贴。

2024-10-30 10:07:03 371 2

原创 卡尔曼讲解与各种典型进阶MATLAB编程(专栏目录,持续更新……)

本专栏旨在深入探讨卡尔曼滤波及其在各类应用中的实现,尤其是通过MATLAB编程进行的典型案例分析。卡尔曼滤波是一种高效的递归滤波器,广泛用于信号处理、控制系统和导航等领域,能够有效地从噪声数据中提取有用的信息。卡尔曼滤波基础:详细介绍卡尔曼滤波的原理、数学背景及基本概念,帮助读者建立坚实的理论基础。进阶应用案例:通过一系列典型的MATLAB编程示例,展示卡尔曼滤波在不同领域(如机器人定位、目标跟踪和传感器融合等)中的实际应用。代码实现与优化。

2024-10-18 10:57:19 526

原创 定位方法与程序讲解(专栏目录,更新中···)

AOA(Angle of Arrival,到达角度)定位是一种基于测量信号到达接收器的角度来确定信号源位置的技术。无需信号源的精确时间:TDOA定位不需要信号源明确的时间戳,只需接收器之间的时间差,因此适用于不便于同步的系统。信号要求:对信号的要求较高,必须能够准确测量到达时间,通常需要高频率的信号和高精度的时钟。高精度:在适当的条件下,TDOA可以实现厘米级的定位精度,尤其在接收器分布合理的情况下。时间差计算:通过比较不同接收器接收到信号的时间,计算出信号到达各个接收器的时间差。

2024-10-03 10:42:33 1763

原创 【MATLAB例程】自适应调节窗口长度的滑动窗口滤波(附与传统滑动窗口滤波的图像与误差统计特性对比),完整例程

信号构造:模拟真实信号、噪声与局部高频扰动;自适应滑动窗口滤波:基于局部标准差调整窗口长度;固定窗口滤波:对比使用 W=5 和 W=21 的固定窗口滤波器;可视化比较:展示滤波前后信号与误差变化;性能评估:计算各方法的 RMSE 误差指标。🚀灵活性高:对不同区域可自动适配平滑强度;💡边界处理完备:避免索引越界;🔍可视化丰富:便于教学或调试;🧩结构清晰:可作为构建更复杂自适应滤波器(如双边、加权等)的基础。

2025-08-09 09:33:47 394

原创 【MATLAB例程】基于UKF的IMM例程,模型使用CA(匀加速)和CT(协调转弯)双模型,二维环境下的轨迹定位。附代码下载链接

本文提出了一种基于交互式多模型(IMM)和无迹卡尔曼滤波(UKF)的目标跟踪算法。该算法融合了匀速直线(CV)和匀速转弯(CT)两种运动模型,通过实时调整模型权重实现自适应跟踪。仿真结果表明,相比于单一模型,IMM-UKF能显著提高目标跟踪精度,在600步的轨迹跟踪中,位置误差降低约30%。算法可准确识别目标运动模式变化(如直线转转弯),模型概率曲线直观反映了不同运动模式的切换过程。代码开源,适用于二维空间中的机动目标跟踪场景。

2025-08-09 09:30:55 282

原创 【MATLAB例程】联邦卡尔曼滤波,主滤波与子滤波融合GPS、IMU、里程计多传感器数据。提供源代码下载链接

本文介绍了一种基于联邦卡尔曼滤波(FKF)的多传感器融合导航系统MATLAB实现。该系统采用主-子滤波器架构,包含IMU+GNSS和IMU+里程计两个子滤波器,通过信息加权融合实现高精度二维状态估计。程序模拟8字形运动轨迹,支持不同传感器更新频率和噪声建模,具有容错性强、计算效率高等特点。仿真结果显示,该方法能有效融合多源传感器数据,显著降低位置和速度误差(误差标准差控制在0.5m和0.2m/s以内)。代码结构清晰,包含轨迹生成、传感器模拟、滤波算法实现及结果分析模块,适用于导航定位算法的研究与开发。

2025-08-08 10:36:09 235

原创 【MATLAB技巧】打开脚本(m文件)后,中文乱码的解决方案

MATLAB打开.m文件出现中文乱码的解决方法:1)用记事本打开正常显示后复制粘贴到MATLAB;2)使用fopen指定GB2312/GBK编码读取文件;3)修改lcdata.xml文件添加GBK编码支持(推荐)。主要原因是MATLAB默认UTF-8编码与文件实际编码不一致导致。修改编码设置可永久解决问题,但需注意对其他文件的影响。最简单的临时解决方案是通过记事本中转。

2025-08-08 10:22:30 223

原创 【MATLAB例程】水下长基线(LBL)三维定位例程,用于AUV自主定位,单点定位无滤波。附例程下载链接

本文介绍了基于MATLAB的水下长基线(LBL)定位系统仿真方法,通过四个非共面基准站实现AUV的三维定位。系统利用声波测距原理和最小二乘法进行位置反解,包含基准站设置、距离计算和位置优化等核心算法流程。仿真结果显示,该方法能有效估计AUV位置,并提供了可视化功能展示定位结果。文章还提出了扩展方向,如加入卡尔曼滤波、改进噪声模型等。完整MATLAB代码可供下载,为水下定位研究提供参考。

2025-08-07 09:53:58 696

原创 【课题推荐】卡尔曼滤波,创新性的算法与应用:从非线性适用性、鲁棒抗差、自适应、金融与生物新应用等方面考虑

本文系统梳理了卡尔曼滤波的创新发展与应用。算法层面,出现了EKF、UKF、CKF等非线性滤波扩展,以及鲁棒自适应滤波、分布式协同滤波等改进方法。应用层面,卡尔曼滤波已广泛应用于自动驾驶多传感器融合、无人机编队导航、结构健康监测和金融预测等领域。当前创新主要体现在算法优化、多学科融合及跨领域应用拓展,推动着导航定位、智能控制等技术的发展。

2025-08-07 09:53:11 1309

原创 【MATLAB例程】KNN方法的指纹定位,定位移动目标的一段轨迹,三维空间,锚点数量可自行更改|附代码下载链接

实现了三维空间下基于KNN的指纹定位算法,支持多基站场景(基站数量可调)的移动终端轨迹跟踪与精度评估。算法通过构建三维指纹库(坐标-RSSI映射),模拟终端轨迹并生成含噪声RSSI测量值,利用KNN匹配实现定位,最终输出RMSE误差曲线、CDF分布及三维轨迹对比图。代码包含基站坐标生成、RSSI噪声模拟、指纹库构建、KNN搜索等完整流程,适用于室内导航和GNSS拒止环境定位的算法验证,实验结果显示锚点数量增加可提升定位精度(3/6/10锚点对比)。

2025-08-06 09:29:31 550

原创 【MATLAB代码】联邦卡尔曼滤波,主滤波与子滤波融合GPS、IMU、里程计等多传感器数据,二维。提供完整代码

本文提出了一种基于联邦卡尔曼滤波(FKF)的多传感器融合导航算法,实现了IMU+GNSS和IMU+里程计两个子系统的信息融合。该算法采用标准联邦架构,包含两个子滤波器和一个主滤波器,通过信息加权分配和反馈机制实现高精度状态估计。仿真结果表明,联邦滤波方法在二维轨迹跟踪中显著优于单一传感器方案,位置误差标准差降低至1.5m,较GNSS单独定位精度提升67%。MATLAB源代码可直接运行,完整展示了8字形轨迹下的多传感器融合过程,包括状态预测、量测更新和信息融合等关键步骤,为多源导航系统开发提供了实用参考。

2025-08-06 09:22:27 343

原创 【MATLAB代码】水下长基线(LBL)三维定位例程,用于AUV自主定位,附完整代码,粘贴到空脚本中即可运行

本文介绍了一种基于MATLAB的水下长基线(LBL)定位系统仿真方法。该仿真模拟AUV通过四个非共面基准站进行三维定位的过程,利用声波测距原理和最小二乘法反解未知位置。文章详细阐述了测距公式、定位原理及误差函数构建方法,并提供了MATLAB实现的核心算法流程,包括基准站设置、距离计算和位置优化。程序通过fminsearch函数进行非线性最小二乘求解,并包含可视化功能。最后提出了包括加入卡尔曼滤波、改进噪声模型等扩展方向,为水下定位研究提供了实用参考。

2025-08-05 09:18:22 329

原创 deepseek、GPT与claude在MATLAB编程上的准确性对比——以卡尔曼滤波调试为例

本文对比了DeepSeek、GPT与Claude三种AI模型在卡尔曼滤波参数调试中的表现。以一维非线性卡尔曼滤波为例,通过调整过程噪声协方差Q和观测噪声协方差R参数,比较各模型优化后的均方根误差(RMSE)结果。实验数据显示:DeepSeek在速度RMSE优化上优于ChatGPT,但在位置RMSE优化表现欠佳;Claude则能同时将速度和位置的RMSE优化到较低水平。研究结果可为导航、定位滤波等领域的参数优化提供参考。

2025-08-05 09:17:09 227

原创 【MATLAB例程】水下AUV自主导航定位例程,定位使用TDOA(到达时间差),适用于三维环境,附代码下载链接

本文介绍了一种基于TDOA的水下AUV导航仿真系统。该系统利用四个水声信标,通过测量到达时间差来估算AUV的三维位置,并控制AUV向目标点移动。仿真结果显示,系统能有效跟踪AUV运动轨迹,同时提供定位误差分析。MATLAB代码实现了完整的仿真流程,包括参数设置、TDOA测量、位置估计、导航控制和结果可视化,适用于水下导航算法验证和研究。

2025-08-04 10:45:50 1187

原创 【MATLAB代码】基于水声通信(ACOMMS)下的到达时间差(TDOA)定位的AUV自主导航例程,附完整代码

水下AUV导航系统仿真研究 本研究基于到达时间差(TDOA)技术实现了水下自主航行器(AUV)的三维导航仿真系统。系统采用四个声学信标作为定位基准,通过TDOA测量数据迭代求解AUV位置。仿真结果表明: 导航性能:系统能够有效跟踪AUV从起点(30,30,-20)到目标点(70,70,-20)的航行轨迹,定位误差保持在合理范围内。 误差分析:定位误差变化曲线显示系统具有稳定的定位精度,平均误差为0.5米左右。 技术特点:采用两步最小二乘迭代算法求解非线性TDOA方程,提高了定位精度和计算效率。 该仿真系统为

2025-08-04 10:44:30 120

原创 【MATLAB例程】自适应IMM,CV和CT两个运动模型,包含观测噪声自适应,使用Sage-Husa EKF作为滤波主体,适用于二维平面下的非合作目标的定位。附代码下载链接

本文介绍了一种二维目标跟踪的自适应交互多模型滤波(AIMM)算法,结合了交互多模型框架、Sage-Husa自适应噪声估计和扩展卡尔曼滤波。该算法采用CV和CT两种运动模型,通过模型概率加权实现运动状态的自适应切换,并利用Sage-Husa方法动态调整观测噪声。系统提供多种后处理工具,包括轨迹对比、误差分析、CDF曲线等,可输出RMSE、最大误差等性能指标。实验结果表明,该方法在复杂运动场景下具有较好的跟踪性能。文章附有MATLAB源代码片段及完整代码获取方式。

2025-08-02 10:23:35 886

原创 【matlab例程】无迹粒子滤波(UPF)的例程,用于三维环境下多雷达目标跟踪,非线性系统

本文提出一种基于无迹粒子滤波(UPF)的多雷达目标三维跟踪算法。该算法通过三个观测站的斜距、方位角和俯仰角观测数据,结合IMU信息实现对非匀速运动目标的三维轨迹估计。创新性地采用动态重采样策略和混合引导分布优化粒子采样效率,并引入角度周期性补偿和观测矩阵动态线性化技术处理非线性问题。实验结果显示,相比传统EKF方法,位置精度提升且抗野值能力增强3倍,在减少粒子数情况下仍保持等效精度。算法支持多目标同步跟踪,并提供位置RMSE、速度RMSE等统计特性输出,适用于复杂环境下的多传感器融合定位场景。

2025-08-02 10:20:33 578

原创 【MATLAB例程】三维非线性系统下的CKF(容积卡尔曼滤波)例程,给出滤波前后的对比,使用组合导航为背景。附MATLAB代码下载链接

本文介绍了基于容积卡尔曼滤波(CKF)的三维状态估计算法实现,针对非线性系统设计。该算法通过噪声抑制和趋势预测,有效解决了传统方法在非线性场景中的跟踪偏差问题。程序模拟了惯性导航与卫星导航组合系统,展示了状态值立体图、各维度时间-状态曲线、误差曲线及CDF图像等可视化结果。Matlab源码包含滤波模型初始化、运动模型构建和CKF滤波实现三个主要模块,适用于自动驾驶导航、工业传感器融合等应用场景。测试结果表明,该算法能有效处理强非线性系统的状态估计问题。

2025-08-01 10:49:14 418

原创 【MATLAB代码】KNN方法的指纹定位,定位移动目标的一段轨迹,三维空间,锚点数量可自行更改|附源代码,可复制粘贴

摘要(150字) 本文实现三维空间多基站指纹定位算法,基于KNN匹配移动终端轨迹。算法通过databaseone函数构建三维指纹库(坐标-RSSI映射),模拟终端运动生成含噪RSSI测量值,采用KNN搜索匹配指纹库实现定位。实验对比3/6/10个基站的定位效果,输出三维轨迹对比图、RMSE误差曲线及CDF分布。结果显示:基站数量增加可提升定位精度,10基站时平均误差显著降低。代码提供完整RSSI建模(对数路径损耗+高斯噪声)、KNN近邻搜索及误差量化模块,适用于室内导航与GNSS拒止环境定位研究,MATLA

2025-08-01 10:48:37 335

原创 【MATLAB例程】灰色预测与多项式预测、指数平滑预测的对比,包含预处理、模型构建和和可视化输出。模拟预测若干年的GDP,有中文注释

本文介绍了一个基于灰色预测模型GM(1,1)的GDP预测MATLAB实现方案。该方案针对小样本数据(4个点以上)进行趋势分析,具有数据需求低、动态适应性强等特点。核心流程包括数据预处理、模型训练和验证对比三部分,特别设计了零值平移处理机制以防止建模失败。代码实现了GM(1,1)建模全过程,并与线性回归、多项式拟合等方法进行对比验证。程序输出包含预测曲线和误差分析结果,适用于经济指标预测等场景。完整代码可通过指定链接获取,作者还提供相关领域的定制开发服务。

2025-07-31 10:01:48 513

原创 最优控制导引律(Optimal Guidance Law, OGL)介绍与MATLAB代码,例程演示

最优控制导引律(OGL)是一种基于最优控制理论的导弹制导方法,通过最小化特定性能指标(如脱靶量、能量消耗或终端约束)生成控制指令。其核心思想是将制导问题转化为数学优化问题,结合导弹动力学模型与目标状态信息,实时计算最优控制输入以实现高精度拦截。

2025-07-31 10:01:22 583

原创 【MATLAB技巧】【免费的小例程】线性拟合的多种方法:polyfit、矩阵、带权重、稳健回归

本文介绍了MATLAB中进行线性拟合的多种方法,包括基础线性拟合(polyfit函数)、矩阵法求解正规方程、带权重的线性拟合和稳健回归(LIBRA工具箱)。基础线性拟合适用于单变量回归,矩阵法适合多元回归,加权回归处理异方差数据,稳健回归则能有效处理异常值。每种方法均提供示例代码和运行结果,并包含误差分析方法如残差计算、决定系数和置信区间评估。这些方法可根据不同数据特性灵活选用,为工程和研究提供实用参考。

2025-07-30 09:58:07 708

原创 【matlab代码】无迹粒子滤波(UPF)的例程,用于三维环境下多雷达目标跟踪,非线性系统|附完整的代码

本文提出了一种基于无迹粒子滤波(UPF)的三维目标跟踪算法,通过融合IMU和雷达观测数据实现运动目标的高精度跟踪。算法采用非线性测量模型处理距离和角度观测,利用多观测站数据提高定位精度。仿真结果表明,该方法能有效跟踪非匀速运动目标,三维位置RMSE为2.1m,速度RMSE为1.7m/s。实验数据包含轨迹图、误差曲线和统计特性分析,验证了算法在复杂运动场景下的鲁棒性。MATLAB源代码完整实现,可直接运行复现结果。

2025-07-30 09:57:36 306

原创 【matlab例程】无迹粒子滤波(UPF)原理与代码解析。一维环境下的简单例程,结构简单、便于理解|附完整的代码|ver2

本文实现了一维运动目标跟踪的无迹粒子滤波(UPF)算法,通过融合运动模型与带噪声观测数据来优化目标位置估计。代码采用MATLAB实现,包含状态转移模型、测量模型和100个粒子的权重更新系统。实验结果显示,UPF估计位置(红色虚线)比直接观测(蓝色虚线)更接近真实轨迹(绿色实线)。误差统计表明,UPF估计的均值和标准差显著优于直接观测,验证了算法在噪声环境下的有效性。关键步骤包括Sigma点生成、状态预测、权重更新和系统重采样,最终输出滤波前后的状态对比曲线和误差时序曲线。

2025-07-29 09:49:55 123

原创 【MATLAB代码】三维非线性系统下的CKF(容积卡尔曼滤波)例程,给出滤波前后的对比,使用组合导航为背景。附完整的MATLAB代码

容积卡尔曼滤波三维非线性系统状态估计 本文实现了容积卡尔曼滤波(CKF)在三维非线性系统中的应用。通过MATLAB代码建立了包含非高斯噪声和非线性状态转移的系统模型,展示了CKF算法在状态估计中的性能。结果显示,CKF能有效克服扩展卡尔曼滤波(EKF)需要线性化的局限,通过容积准则逼近非线性函数的概率分布。三维状态曲线图直观展示了真实值、滤波前值和CKF滤波结果的对比,误差曲线和累计密度函数(CDF)图进一步验证了CKF算法的估计精度和收敛性。该实现为处理高维非线性系统的状态估计问题提供了有效解决方案。

2025-07-29 09:49:17 502

原创 【MATLAB代码】灰色预测与多项式预测、指数平滑预测的对比,包含预处理、模型构建和和可视化输出。模拟预测若干年的GDP,订阅后可查看完整代码,有中文注释

本文实现了一个基于灰色预测模型GM(1,1)的GDP预测系统,通过对比线性回归、二次多项式和指数平滑等传统方法,验证了灰色模型的优越性。代码完整实现了数据预处理、模型构建、可视化分析和误差验证全流程,并采用正则化最小二乘法优化参数估计。结果显示GM(1,1)在MAE、RMSE等指标上表现最优,其核心算法基于累加生成(AGO)和灰微分方程构建时间响应函数,通过累减还原(IAGO)得到预测值。模型验证阶段计算了后验差比值C和小误差概率P等灰色系统专用指标,为经济预测提供了可靠工具。

2025-07-28 10:13:18 282

原创 【MATLAB代码】自适应IMM,CV和CT两个运动模型,包含观测噪声自适应,使用Sage-Husa EKF作为滤波主体,适用于二维平面下的非合作目标的定位。附完整代码

该文介绍了一种基于自适应IMM(交互多模型)滤波算法的二维目标运动状态估计方法。该方法融合了扩展卡尔曼滤波(EKF)框架、Sage-Husa自适应噪声估计技术,采用CV(匀速)和CT(匀角速度转弯)两种运动模型进行状态估计。通过MATLAB仿真验证了算法的有效性,结果显示该方法能准确跟踪目标运动轨迹,并输出误差统计特性。核心创新点在于结合了模型概率自适应调整和噪声参数在线估计,实现了对复杂运动模式的高精度跟踪。代码实现完整,可直接运行,适用于机动目标跟踪领域的研究与应用。

2025-07-28 10:12:04 225

原创 【IMM&CKF】基于容积卡尔曼滤波(CKF)的多模型交互的定位程序,模型为CV和CT,三维环境,matlab代码|附下载链接

该程序基于容积卡尔曼滤波(CKF)实现三维空间机动目标跟踪,采用交互多模型(IMM)方法融合匀速(CV)和匀角速度转弯(CT)两种运动模型。程序模拟了含机动变化的目标轨迹(直线-转弯-直线),通过球坐标观测数据进行状态估计,并与单模型CKF进行对比验证。实验结果表明,IMM-CKF方法能有效处理目标机动,显著提升三维定位精度。MATLAB代码包含完整的轨迹生成、滤波算法实现和性能评估模块,支持误差分析和可视化展示。

2025-07-26 09:49:22 1077

原创 【MATLAB代码演示】制导——平行接近法,三维,目标是运动的

本文介绍了三维平行接近法导引的动态仿真实现,通过MATLAB代码模拟导弹追踪移动目标的过程。核心内容包括:导弹与目标的三维运动学建模、基于比例控制的导引律实现、以及轨迹可视化。代码采用0.01秒仿真步长,通过调整速度矢量使导弹沿最优路径逼近目标,最终在100单位距离内完成拦截。系统支持参数自定义(导引增益k、目标速度v_t等),可扩展为机动目标场景。文中还给出了平行接近法的核心数学模型,包括视线角速率约束、相对运动方程和拦截条件判定。该仿真适用于制导算法开发与教学验证,具有全维度建模、高性能计算等特点。

2025-07-26 09:48:40 1092

原创 【MATLAB代码】制导方法——平行接近法导引,二维环境,动态目标

本文介绍了二维平行接近法导引的动态仿真实现。该算法通过实时调整导弹速度方向,使目标瞄准线保持平行移动,最终在设定距离内完成拦截。仿真程序包含参数配置、运动学更新、轨迹记录及可视化模块,输出拦截时间和运动轨迹图。导引关系方程采用相对位置反馈控制导弹运动,适用于制导算法教学与性能验证

2025-07-25 13:24:22 982

原创 【基于CKF的IMM】MATLAB例程,CV和CT两个模型下的IMM,二维,滤波使用CKF(容积卡尔曼滤波),附下载链接

摘要:本文提出了一种基于交互多模型(IMM)和容积卡尔曼滤波(CKF)的多模型融合定位方法,通过与单一的CV-CKF(匀速模型)和CT-CKF(匀角速度转弯模型)对比,验证其在机动目标跟踪中的优越性。程序实现了CV/CT模型的状态转移矩阵、IMM概率转移机制和CKF非线性滤波,通过加权融合实现模型自适应切换。仿真结果表明,IMM-CKF方法能有效应对直线-转弯运动切换,显著降低位置和速度估计误差,模型概率曲线准确反映目标运动模式变化。该方法适用于复杂机动场景下的高精度目标跟踪。

2025-07-25 13:23:41 985

原创 【MATLAB例程】UAV集群雷达跟踪移动目标,EKF融合距离和径向速度,二维环境,附代码下载链接

本文提出了一种基于扩展卡尔曼滤波(EKF)的多无人机(UAV)协作跟踪动态目标的仿真方法。通过多架无人机搭载雷达传感器,实现对移动目标的位置和速度估计。仿真中无人机采用螺旋、变速圆周、椭圆等不同运动轨迹,确保观测几何多样性。系统融合距离和径向速度测量信息,利用EKF算法进行目标状态估计,并提供了轨迹对比、误差分析、协方差演化等多种可视化工具。实验结果表明,该方法能有效跟踪非线性运动目标,为多无人机协同定位与跟踪技术研究提供了仿真基础。代码包含完整的参数设置、噪声模型和EKF实现框架。

2025-07-24 09:48:34 1137

原创 【IMM&CKF】基于容积卡尔曼滤波(CKF)的多模型交互的定位程序,模型为CV和CA,三维空间|matlab代码例程,附代码下载链接

本文提出了一种基于交互多模型(IMM)和立方卡尔曼滤波(CKF)的三维机动目标跟踪算法。算法通过融合CV(匀速)和CA(匀加速)两种运动模型,有效应对目标机动变化。仿真实验表明,IMM-CKF方法在三维空间跟踪中显著优于单一模型方法,尤其在机动阶段(如转弯)表现突出。结果通过三维轨迹图、误差曲线和定位指标(平均误差0.87m)验证了算法的有效性。MATLAB代码实现了目标仿真、IMM-CKF滤波和性能评估等完整流程,为机动目标跟踪提供了实用解决方案。

2025-07-24 09:48:05 263

原创 【IMM&CKF】基于容积卡尔曼滤波(CKF)的多模型交互的定位程序,模型为CV和CT,三维环境,matlab代码,订阅专栏后可查看完整代码

本文提出了一种基于容积卡尔曼滤波(CKF)的三维多模型交互定位算法,集成匀速(CV)和匀角速度转弯(CT)两种运动模型,通过IMM方法提高复杂机动目标的定位精度。算法在三维空间中实现,状态变量包含位置和速度分量,观测模型采用球坐标系测量。仿真结果表明,相比单一模型CKF,IMM-CKF能有效处理机动运动,显著降低定位误差,尤其在转弯机动阶段性能提升明显。程序提供了完整的MATLAB实现,包含轨迹生成、滤波计算和性能评估模块,可直接运行并输出三维轨迹对比和误差分析结果。

2025-07-23 09:43:52 135

原创 【互补滤波】加速度计与陀螺仪数据的互补滤波,用于估计角度,公式分析与MATLAB例程。附下载链接

本文介绍了一个完整的MATLAB互补滤波器实现,用于融合陀螺仪和加速度计数据来进行姿态角估计。该代码通过仿真生成真实姿态角,并模拟传感器噪声,展示了互补滤波器的工作原理和性能分析。核心原理是利用互补滤波器系数α(推荐值0.95)平衡陀螺仪(高频响应但有漂移)和加速度计(低频稳定但易受干扰)的优势。代码提供了参数设置、传感器数据仿真、互补滤波器实现等功能,并包含多维度分析(时域/频域/参数分析)和性能评估(RMSE、误差曲线等)。运行结果显示了不同α值下的滤波效果对比和频率特性曲线,为姿态估计提供了完整的仿真

2025-07-23 09:41:35 897

原创 MATLAB技巧——xline和yline的命令介绍与示例

本文介绍了MATLAB中xline和yline函数的用法,用于在图形中绘制垂直坐标轴的参考线。xline绘制竖直线,yline绘制水平线,两者均支持自定义线型、颜色和标签。文章提供了详细语法说明,包含线型(实线、虚线等)和颜色(红、绿、蓝等)的参数设置,并通过示例代码演示了实际应用。示例展示了如何在sin函数图形中添加x=3的红色虚线和y=0的绿色点划线。最后说明了如何通过ConstantLine对象修改线的样式属性(如线宽、颜色)。该功能适用于数据可视化中的参考线标记。

2025-07-22 09:48:26 346

原创 【基于CKF的IMM】CV和CT两个模型下的IMM,二维,滤波使用CKF(容积卡尔曼滤波),附完整的matlab代码

该文章摘要: 本文提出了一种基于交互多模型(IMM)和容积卡尔曼滤波(CKF)的融合定位算法,用于解决目标在直线运动和转弯机动之间的模型切换问题。通过MATLAB仿真实现了IMM-CKF算法,并与单一的CV-CKF(匀速模型)和CT-CKF(匀角速转弯模型)方法进行对比。实验结果表明,在包含直线段和转弯段的复合轨迹跟踪中,IMM-CKF方法能够自适应调整模型权重,显著提高了定位精度。轨迹跟踪图、位置/速度误差对比图以及模型概率曲线直观展示了IMM算法的优势。文章提供了完整的MATLAB实现代码,可用于目标跟

2025-07-22 09:46:28 481

原创 【MATLAB代码】UAV集群雷达跟踪移动目标,EKF融合距离和径向速度,二维环境,附完整的代码

本文提出了一种基于扩展卡尔曼滤波(EKF)的无人机集群协作雷达跟踪算法,用于动态目标的定位与速度估计。该算法利用多架动态移动的无人机作为锚点,通过融合距离测量和径向速度信息实现目标跟踪。仿真结果表明,在50秒的跟踪过程中,系统能够有效应对目标复杂运动轨迹(螺旋运动+加速度变化)和锚点动态变化(不同运动模式)的挑战。误差曲线显示位置误差在2米以内,速度误差在0.5m/s以内,验证了算法的有效性。MATLAB源代码直接可用,为相关研究提供了可复现的实验平台。

2025-07-21 09:35:26 321

【MATLAB例程】基于Taylor迭代的二维TOA定位解算程序,锚点数量可自由设置

> Taylor迭代可以在噪声复杂的情况下,取得良好的定位效果,广泛应用于TDOA的解算过程中,但如果TOA的情况下,噪声呈现非高斯,可是可以使用Taylor的,本文给出其二维平面上的例程。 > 参考文献:《基于Taylor-Chan算法的改进UWB室内三维定位方法》

2025-07-13

【MATLAB例程】Chan方法解算TOA,用于三维目标的定位,锚点数量可自适应

> Chan和Taylor不仅可以用于TDOA,也可以用于TOA的解算。 > 本代码参考论文《基于Taylor-Chan算法的改进UWB室内三维定位方法》,给出三维空间中,锚点数量可自适应的Chan方法解算TOA的例程

2025-07-10

论文复现Taylor算法用于TOA(到达时间)的三维标签位置解算,360个标签、12个基站的环境作为验证,附MATLAB例程

Taylor方法解算TOA,定位三维目标、12个锚点/360个测试的标签

2025-07-10

【matlab例程】AOA与TDOA混合定位例程,适用于二维环境、4个锚点的定位

本文给出一个AOA与TDOA混合定位的MATLAB例程,适用于二维环境、4个锚点(基站)下的定位情况。锚点、待定位点均可在代码中修改,带中文注释

2025-07-09

【MATLAB例程】AOA与TDOA混合定位例程,适用于三维环境、4个锚点的情况

程序实现了基于 **AOA(Angle of Arrival,角度到达法)** 与 **TDOA(Time Difference of Arrival,到达时间差)** 的三维空间混合定位算法。它模拟一个空间中未知位置的目标点,通过四个空间锚点(基站)对其进行角度与时间差的测量,实现三种方式的定位估计并输出定位误差,绘制定位结果和锚点分布图

2025-06-29

【MATLAB例程】AOA与TDOA混合定位例程,适用于二维环境、3个锚点的定位

本 MATLAB 程序实现了基于Angle of Arrival (AOA)与Time Difference of Arrival (TDOA)的二维定位方法,通过自适应融合与最小二乘优化,实现对未知目标的高精度估计。本例中固定使用了 3 个基站(锚点),算法框架支持扩展到更多基站。 直接运行后可得到二维、3个锚点的TDOA(到达时间差)与AOA(到达角度)的混合定位方法的定位结果展示与对比

2025-07-05

【MATLAB例程】AOA与TDOA混合定位例程,自适应基站数量,二维,可调节锚点数量

本matlab代码例程为一个定位仿真,用于在二维平面上,使用AOA的角度测量和TDOA的到达时间差的测量,来达到对未知点的精确定位。最后输出定位示意图、真实点坐标、仅AOA定位坐标与误差、仅TDOA定位的坐标与误差、AOA+TDOA混合定位的坐标与误差

2025-07-05

【matlab代码】层次聚类(Hierarchical Clustering)的代码例程

程序实现了层次聚类(Hierarchical Clustering)的操作分析。二维数据集,并使用MATLAB中的linkage和cluster函数进行层次聚类分析。最终,程序会输出每个簇的大小、每个簇的聚类误差,并绘制树状图、聚类前的数据分布和聚类后的结果。

2025-06-29

【MATLAB代码】K-Means 聚类的代码例程,带数据生成、聚类计算、结果显示、误差输出等

本MATLAB代码实现了一个完整的K-Means聚类算法演示,适用于数据聚类学习或算法验证。代码通过模拟数据生成、聚类分析、结果可视化及误差评估,直观展示了K-Means的工作原理和性能。

2025-06-29

【MATLAB例程】GMM聚类算法演示代码,包括生成模拟数据、簇数选择、模型训练、结果可视化,性能评估等

GMM聚类算法演示代码,包括生成模拟数据、簇数选择、模型训练、结果可视化,性能评估等,输出多个图示和文字性结果。

2025-06-29

【matlab例程】基于Versoria函数优化协方差更新的改进扩展卡尔曼滤波(MVC-EKF)与经典EKF的对比

本代码实现了基于Versoria函数优化协方差更新的改进扩展卡尔曼滤波(MVC-EKF),并与传统扩展卡尔曼滤波(EKF)进行对比。代码通过一维非线性运动模型仿真,展示了MVC-EKF在处理含异常值观测数据时的鲁棒性优势,适用于目标跟踪、导航定位等状态估计场景。

2025-06-27

【matlab定位例程】基于AOA和TDOA混合的定位方法,背景为三维空间,自适应锚点数量

本代码实现了一种三维空间中的混合定位算法,结合到达角($AOA$)和到达时间差($TDOA$)两种测量方式,通过自适应基站数量和迭代优化策略提升定位精度。主要包含以下功能模块: 1. **多基站场景建模**:支持任意数量基站的随机部署 2. **混合信号生成**:模拟含噪声的AOA和TDOA观测数据 3. **定位算法实现**: - 纯$AOA$定位(最小二乘法) - 纯$TDOA$定位(加权迭代最小二乘) - $AOA+TDO$A联合定位 4. **性能评估**:三维可视化与误差统计分析

2025-06-26

【matlab例程】轨迹漂移时,利用终点位置的轨迹校正,matlab例程,可用于降低惯导漂移带来的误差,适用于三维空间

代码可用于模拟和校正三维惯性导航系统(INS)的轨迹漂移问题。通过线性分配终点误差,实现对累积漂移的补偿。为INS漂移提供一个非滤波的思路。

2025-06-24

【INS创新校正方法】轨迹漂移的终点校正例程,给惯导漂移问题提供一个新的思路 一维/二维/三维可选

MATLAB例程,用于在已知起终点数据时,通过终点数据来抑制惯导解算时的轨迹,给惯导漂移问题提供一个新的思路

2025-06-24

【MATLAB例程】 基于MVC(Max Versoria Criterion)的EKF和经典EKF的对比,例程用于二维平面的运动估计

基于Versoria函数改进的扩展卡尔曼滤波(MVC-EKF)算法,与传统EKF进行对比,重点解决传统EKF在非高斯噪声条件下的鲁棒性问题。

2025-06-21

【MATLAB代码】 基于MVC(Max Versoria Criterion)和MCC的EKF,两种算法对比,例程用于二维平面的运动估计

代码实现MVC和MCC的EKF,即:通过Versoria函数(MVC)和最大相关熵准则(MCC)优化滤波器在非高斯噪声条件下的鲁棒性。系统针对二维平面运动目标跟踪场景,重点解决观测异常值干扰下的状态估计问题

2025-06-21

【MATLAB代码】制导方法介绍与例程-追踪法,适用于二维平面,目标是移动的

二维平面下追踪法导引的matlab实现。追踪法通过保持导弹速度矢量始终指向目标进行制导

2025-06-20

【MATLAB例程】三维空间内,交互式多模型(IMM),匀速转弯ct、Singer、当前统计CS三种模型滤波

代码实现了交互式多模型(IMM)滤波算法在三维空间中的应用,结合了三种经典的运动模型(CT、Singer、CS模型),并通过仿真数据验证了算法的性能。主要功能包括目标轨迹仿真、IMM滤波的实现、误差分析与可视化。

2025-06-15

【LSTM多输入单输出】基于长短期记忆网络的多输入单输出回归预测的MATLAB例程

该代码示例演示了如何使用长短期记忆网络(LSTM)进行多输入单输出的回归预测。具体功能包括数据生成、预处理、模型构建、训练及性能评估。

2025-06-15

IMM算法的MATLAB代码,二维,CVCTCS三种模型

代码实现了**交互多模型(IMM)算法**,通过融合三个运动模型(匀速CV/匀速转弯CT/当前统计CS)实现对机动目标的鲁棒跟踪。可以显著提升复杂轨迹跟踪精度。

2025-06-15

【MATLAB代码】基于UKF的IMM例程,模型使用CA(匀加速)和CT(协调转弯)双模型,二维环境下的轨迹定位

本文介绍的MATLAB程序可以实现:基于交互式多模型(IMM)的无迹卡尔曼滤波(UKF)方法,用于二维平面中目标的运动状态估计。该算法结合了两个运动模型:匀速直线模型(CV)和匀速转弯模型(CT),可在不同运动模式间自适应切换,从而提高目标跟踪精度。

2025-08-07

【MATLAB例程】自适应调节窗口长度的滑动窗口滤波(附与传统滑动窗口滤波的图像与误差统计特性对比),完整例程

滑动窗口平均滤波器**是一种经典的平滑手段,适用于噪声抑制。然而,固定窗口长度往往无法兼顾信号中不同区域的特性。为此,本程序实现了一个**自适应窗口长度的滑动平均滤波器**,其窗口长度根据信号局部标准差动态变化。

2025-08-07

【MATLAB例程】滑动窗口均值滤波、中值滤波、最小值/最大值滤波对比

滑动窗口均值滤波、中值滤波、最小值/最大值滤波对比。最小值和最大值仅在特定环境下可用,均值滤波和中值滤波具有普适性,可直接用

2025-08-06

【MATLAB绘图进阶教程(二)】绘图环境与基础命令,绘图示例、对应的mlx实时脚本文件

【MATLAB绘图进阶教程(二)】绘图环境与基础命令,绘图示例、对应的mlx实时脚本文件

2025-08-06

【MATLAB绘图技巧】线段颜色、数据点形状与颜色等的设置方法,mlx例程

【MATLAB绘图技巧】线段颜色、数据点形状与颜色等的设置方法,mlx例程

2025-08-05

【MATLAB例程】联邦卡尔曼滤波,主滤波与子滤波融合GPS、IMU、里程计多传感器数据

本程序完整实现了一个标准结构的\*\*联邦卡尔曼滤波(Federated Kalman Filter, FKF)\*\*仿真系统,适用于多传感器融合定位场景。系统包含两个子滤波器:子滤波器1融合IMU和GNSS信息,子滤波器2融合IMU和里程计(odom)信息,主滤波器则负责将两个子滤波器的估计结果进行加权融合,从而得到更准确、稳定的状态估计。 仿真中,目标按一个8字形轨迹在二维平面中运动,状态包含位置、速度和加速度。GNSS提供低频位置观测,里程计提供中频速度观测,而IMU以高频提供加速度观测。每个子滤波器独立运行卡尔曼滤波,并根据传感器更新频率异步进行量测更新。 为避免子滤波器之间的信息冗余,主滤波器在融合估计结果时,专门处理了公共信息的去重与加权。此外,主滤波器结果还可通过自适应反馈机制反向传递给子滤波器,增强整体一致性与鲁棒性。 程序在每步均保存各滤波器的估计状态,并最终计算其位置与速度误差,输出RMSE统计结果,并绘制真实轨迹、估计轨迹、误差曲线与误差分布图,直观展现联邦滤波的融合效果与性能提升。适合用于多传感器导航算法的研究、教学与工程验证。

2025-08-05

【MATLAB例程】水下长基线(LBL)三维定位例程,用于AUV自主定位,单点定位无滤波

基于MATLAB的水下长基线(LBL)定位系统仿真。模拟AUV通过四个非共面基准站进行三维定位的过程,利用声波测距原理和最小二乘法反解未知位置。文章详细阐述了测距公式、定位原理及误差函数构建方法,并提供了MATLAB实现的核心算法流程,包括基准站设置、距离计算和位置优化。定位使用非线性最小二乘求解,并包含可视化功能。 本程序由 matlabfilter 独立开发,未经许可不得转载、倒卖或用于商业用途。

2025-08-04

【MATLAB例程】水下AUV自主导航定位例程,定位使用TDOA(到达时间差),适用于三维环境

代码实现基于到达时间差(TDOA)的水下AUV(自动水下航行器)导航仿真系统,旨在通过模拟AUV在三维水下环境中的运动,利用水声信标来估算AUV的位置。仿真系统包括四个声学信标,并通过TDOA定位技术迭代求解AUV的实时位置。

2025-08-03

【MATLAB例程】KNN方法的指纹定位,定位移动目标的一段轨迹,三维空间,锚点数量可自行更改

代码实现**三维空间下基于KNN的指纹定位算法**,面向多基站(基站数量可调节)场景完成移动终端轨迹跟踪与精度评估。核心逻辑为:通过 `databaseone` 函数构建三维指纹库(坐标 - 平均RSSI映射),迭代模拟终端轨迹、生成含噪声的RSSI测量值,再以KNN算法匹配指纹库实现定位,最终输出RMSE误差曲线、CDF分布及三维轨迹对比图。

2025-07-30

【MATLAB例程】三维非线性系统下的CKF(容积卡尔曼滤波)例程,给出滤波前后的对比,使用组合导航为背景

程序实现了容积卡尔曼滤波(CKF)算法在三维动态系统中的应用,专为处理复杂、非线性环境下的状态追踪问题设计。代码通过噪声抑制和趋势预测,解决了传统方法在非线性场景中的跟踪偏差问题,适用于自动驾驶导航、工业传感器融合等场景。 用于测试的系统具有强非线性特征,模拟导航中惯性导航和卫星导航的组合。

2025-07-26

【MATLAB例程】自适应IMM,CV和CT两个运动模型,包含观测噪声自适应,使用Sage-Husa EKF作为滤波主体,适用于二维平面下的非合作目标的定位

用于二维平面中对目标运动状态的自适应估计。它融合了 **交互多模型(IMM)滤波框架**、**Sage-Husa自适应噪声估计方法** 以及 **扩展卡尔曼滤波(EKF)**,使用CV和CT两种运动模型。

2025-07-24

【MATLAB例程】灰色预测与多项式预测、指数平滑预测的对比,包含预处理、模型构建和和可视化输出 模拟预测若干年的GDP,有中文注释

代码实现了灰色预测模型GM(1,1)在GDP预测中的应用,并结合线性回归、二次多项式回归和指数平滑模型进行对比分析。代码包含数据预处理、模型构建、可视化输出和误差验证四个核心模块,实现了从数据输入到预测结果展示的全流程。

2025-07-26

IMM&CKF基于容积卡尔曼滤波(CKF)的多模型交互的定位程序,模型为CV和CT,三维环境,matlab代码

使用容积卡尔曼滤波(CKF)处理非线性观测问题,并集成匀速(CV)和匀角速度转弯(CT)两种运动模型,通过模型交互提高定位精度。同时,程序还包含单模型CKF(纯CV和纯CT)的对比分析,便于评估IMM方法的性能优势。 1. **程序目的与核心算法** - **目标**:模拟三维空间中机动目标的轨迹跟踪,例如无人机或飞行器,在存在过程噪声和观测噪声的情况下,估计目标的位置和速度状态。 - **核心滤波方法**:容积卡尔曼滤波(CKF)用于处理非线性观测模型(球坐标到笛卡尔坐标的转换)。CKF通过容积点近似非线性函数,避免雅可比矩阵计算,提高数值稳定性。 - **模型交互**:采用交互多模型(IMM)框架,动态切换CV和CT模型。IMM包括模型概率计算、混合初始条件和模型特定滤波步骤,以处理目标机动(如直线运动到转弯运动)。 2. **运动模型描述** - **CV模型(匀速模型)** 过程噪声协方差矩阵 $Q_{\text{cv}}$ 基于噪声强度 $q_{\text{cv}}$ 和采样时间 $T$ 构建。 - **CT模型(匀角速度转弯模型)**

2025-07-23

【基于CKF的IMM】MATLAB例程,CV和CT两个模型下的IMM,二维,滤波使用CKF(容积卡尔曼滤波)

这段程序实现了基于交互多模型(IMM)与非线性滤波方法的目标跟踪算法,主要用于解决目标在不同运动模式下(如直线、转弯)动态切换时的定位与速度估计问题。程序中综合了两种典型的运动模型,通过动态调整模型概率,实现了对机动目标的精准跟踪,同时与单一模型方法(如匀速、匀角速度)进行了性能对比。 代码通过模拟复杂的真实运动轨迹和观测数据,利用多模型的融合策略动态适配不同运动阶段,提升了估计精度和稳定性。最终,程序输出了完整的估计结果、误差曲线及模型概率的变化情况,清晰展示了多模型方法在处理机动目标时的优势与效果,适合用于定位导航、目标跟踪等应用场景的算法验证与教学示范。 更多介绍见代码中的中文注释注释。 原文链接:https://blog.csdn.net/callmeup/article/details/149488067

2025-07-20

【MATLAB例程】UAV集群雷达跟踪移动目标,EKF融合距离和径向速度

本代码实现了UAV集群协作雷达跟踪动态目标的完整仿真,结合扩展卡尔曼滤波(EKF),通过多架动态移动的无人机(作为锚点)协作,融合距离测量和径向速度信息对移动目标进行定位与速度估计。

2025-07-20

加速度计与陀螺仪数据的互补滤波,用于估计角度,MATLAB例程

完整的MATLAB互补滤波器(Complementary Filter)实现,用于融合陀螺仪和加速度计数据来估计姿态角。该代码通过仿真演示了互补滤波器的工作原理,并提供了多种参数设置下的性能对比分析。

2025-07-16

IMM&CKF基于容积卡尔曼滤波(CKF)的多模型交互的定位程序,模型为CV和CA,matlab代码

代码实现了**三维机动目标的IMM-CKF跟踪算法**,用于对具有多种运动模式的目标(如匀速、匀加速等)进行高精度跟踪。算法结合了**交互多模型(IMM)框架**与**立方卡尔曼滤波(CKF)方法**,针对目标在不同机动阶段(如匀速、转弯、爬升等)的动态变化,动态切换与融合CV(匀速)与CA(匀加速)两种运动模型,以提升跟踪鲁棒性与精度。

2025-07-15

【MATLAB例程】Taylor算法用于TOA(到达时间)的三维标签位置解算,可自适应基站数量

自适应锚点(基站)的Taylor算法解算TOA(到达时间)的MATLAB代码。参考论文:《基于Taylor-Chan算法的改进UWB室内三维定位方法》中的Taylor算法来解算TOA的复现程序(MATLAB)。

2025-07-14

【MATLAB例程】温湿度多传感器卡尔曼滤波,对多个温度传感器和湿度传感器的数值进行滤波,滤波结果包括:图像与平均值的误差对比

本例程用于对温湿度多传感器进行滤波,使用卡尔曼滤波对4个温度传感器和5个湿度传感器的动态数值滤波后,卡尔曼滤波的误差与传感器数据均值的误差对比,使用曲线图和柱状图来直观反映误差大小,并输出RMSE数值对比。 代码同时提供了实时融合接口,适合硬件在线应用,支持动态补偿传感器的噪声与漂移。

2025-07-13

定位代码基于Chan方法的TOA定位解算方法,含TOA的建模过程,matlab,锚点数量可自适应

> Chan方法解算TOA,定位二维目标、锚点数量可自适应 参考文献:《基于Taylor-Chan算法的改进UWB室内三维定位方法》

2025-07-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除