集训第三周:高精度算法(洛谷P1009 阶乘之和)

本文详细介绍了高精度算法,包括高精度加、减、乘、除及阶乘的计算方法。在讲解过程中,以洛谷P1009 阶乘之和问题为例,阐述如何运用高精度算法解决此类问题,重点讨论了高精度乘法和加法的实现,并提供了实际代码参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

南昌理工acm集训
高精度算法:
高精度算法(High Accuracy Algorithm)是处理大数字的数学计算方法。在一般的科学计算中,会经常算到小数点后几百位或者更多,当然也可能是几千亿几百亿的大数字。一般这类数字我们统称为高精度数,高精度算法是用计算机对于超大数据的一种模拟加,减,乘,除,乘方,阶乘,开方等运算。对于非常庞大的数字无法在计算机中正常存储,于是,将这个数字拆开,拆成一位一位的,或者是四位四位的存储到一个数组中, 用一个数组去表示一个数字,这样这个数字就被称为是高精度数。高精度算法就是能处理高精度数各种运算的算法,但又因其特殊性,故从普通数的算法中分离,自成一家。(百度百科)

(1)高精加

一位一位的对着加,注意存储进位,小的数加完后把大数剩下的加进来,注意前导零和相加等于0;
模板

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;
const  int maxn=2e2+4;
char s1[maxn]={
   
   };
char s2[maxn];
int a[maxn];
int b[maxn];
int c[maxn];
int main()
{
   
   
	scanf("%s %s",s1,s2);
	int len1=strlen(s1);
	for(int i=0;i<len1;++i){
   
   
		a[i]=s1[len1-i-1]-'0';
	}
	int len2=strlen(s2);
	for(int i=0;i<len2;++i){
   
   
	  b[i]=s2[len2-i-1]-'0';
	}
	int len=max(len1,len2)+1;
	int jw=0;
	for(int i=0;i<len;i++){
   
   
		c[i]=a[i]+b[i]+jw;
		jw=c[i]/10;
		c[i]=c[i]%10;
	}
	for(int i=len-1;i>=0;i--){
   
   
		if(0==c[i]&&len>1)
		len--;
		else break;
	}
	for(int i=len-1;i>=0;i--){
   
   
		printf("%d",c[i]);
	}
	printf("\n");
	return 0;
 }

注意满十进位
如果两个数都是负数,那么去掉负号,输出结果前加上负号即可。

(2)高精减:

类似加法,可以用竖式求减法。在做减法运算时,需要注意的是:被减数必须比减数大,同时需要处理借位。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
using namespace std;
int main()
{
   
   
	int a[501],b[501],i,len1,len2,temp;
	char st1[501],st2[501];
	string s1,s2,s;
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	scanf("%s",st1);
	s1=st1;
	len1=s1.size();
	scanf("%s",st2);
	s2=st2;
	len2=s2.size();
               if((len1<len2)||((len1==len2)&&(s1<s2)))
	{
   
   
		printf("-");
		s=s1;s1=s2;s2=s;
		temp=len1;len1=len2;len2=temp;
	}
	for(i=1;i<=len1;++i)
	  a[i]=s1[len1-i]-48;
	for(i=1;i<=len2;++i)
	  b[i]=s2[len2-i
### 关于洛谷 P1009 阶乘之和的题目解析 #### 题目描述 该题目要求计算给定范围内所有自然数阶乘的总和。具体来说,对于每一个不大于指定数值 \( N \),需要累加从 1 到 \( N \) 的各个数字对应的阶乘值。 #### 输入输出格式 - **输入**: 单个正整数 \( N \)(\( 1 ≤ N ≤ 50 \)) - **输出**: 所有小于等于 \( N \) 自然数的阶乘之和 #### 示例 当输入为 `3` 时,程序应返回的结果是 `9`,因为 \( 1! + 2! + 3! = 1 + 2 + 6 = 9 \)[^3]。 #### 解决方案概述 为了高效解决这个问题,可以采用迭代方法来逐项增加当前累积的阶乘结果,并将其加入到总的求和变量中去。考虑到 Python 中的大整数支持特性,在处理较大范围内的阶乘运算时不会遇到溢出问题。 ```python def factorial_sum(n): sum_of_factorials, current_factorial = 0, 1 for i in range(1, n + 1): current_factorial *= i sum_of_factorials += current_factorial return sum_of_factorials if __name__ == "__main__": n = int(input()) result = factorial_sum(n) print(result) ``` 此代码片段定义了一个名为 `factorial_sum` 函数用于接收参数 `n` 并返回前 `n` 个自然数的阶乘之和。通过循环遍历从 1 至 `n` 的每个整数并不断更新两个局部变量:一个是用来存储当前正在计算的那个数的阶乘 (`current_factorial`);另一个则是用来保存最终所需的阶乘之和(`sum_of_factorials`). 最后打印出所得到的结果.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值