
机器学习
柚芷
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
样本分布不平衡处理策略(20210429)
参考:https://blog.csdn.net/opp003/article/details/89920665原创 2021-04-29 15:32:19 · 211 阅读 · 0 评论 -
Keras(四)——fit,fit_generator
主要就keras中fit和fit_generator这两个函数做出解释。参考:https://blog.csdn.net/learning_tortosie/article/details/85243310直接区别两个函数的参数:Keras.fit() Keras.fit_generator() keras.fit_generator()其他参数 x generator(输出为(inputs, targets)或(inputs, targets, samp.原创 2020-12-15 15:39:25 · 151 阅读 · 0 评论 -
Numpy常用总结(20201214)
1、np.argmax()import numpy as npa = np.array([[2.5404317e-03,1.1229481e-01, 1.9477041e-03, 4.1146163e-04, 1.3162383e-04, 1.2035034e-01, 2.4439844e-03, 7.2189087e-01, 3.7895240e-02, 9.3566909e-05],[9.2819709e-01, 1.3503281e-02, 3.8306025e-05, 1.103...原创 2020-11-25 15:20:05 · 153 阅读 · 0 评论 -
零次学习 Zero-Shot Learning(20201125)
CCF2020大数据与计算智能大赛——面向数据安全治理的数据内容智能发现与分级分类# 在比赛即将结束的时候进入。然后。。就是很菜。Zero-Shot Learning目前流行的zero-shot方案有两种:(1)人工专家未知标签的类中心定义,再进行向量化;(2)海量的数据集自动学习未知类中心向量。其中(1)更加准确,效果更好,但是更加麻烦。在不能使用外部数据的情况下,也不能人工写某些概念性的东西,所以直接采用Zero-Shot方案难度较大。可以尝试使用远程监督的方法是。在原创 2020-11-24 22:47:26 · 787 阅读 · 2 评论 -
在线学习算法
背景Online Learning是工业界比较常用的机器学习算法,在很多场景下都能有很好的效果。本文主要介绍Online Learning的基本原理和两种常用的Online Learning算法:FTRL(Follow The Regularized Leader)[1]和BPR(Bayesian Probit Regression)[2],以及Online Learning在美团移动端推荐重排序的应用。什么是在线学习(Online Learning)准确地说,Online Learning并不转载 2020-11-24 11:50:22 · 3214 阅读 · 0 评论 -
自监督学习(self-supervised learning)(20201124)
看论文总是会看出来一堆堆奇奇怪怪的名词。从远程监督、有监督、半监督、无监督开始,最近又看到了一个自监督。首先先对上面的概念进行简述:半监督(semi-supervised learning):利用好大量无标注数据和少量有标注数据进行监督学习;远程监督(distant-supervised learning):利用知识库对未标注数据进行标注;无监督:不依赖任何标签值,通过对数据内在特征的挖掘,找到样本间的关系,比如聚类相关的任务。自监督:利用辅助任务从无监督的数据中挖掘大量自身的信息。原创 2020-11-24 10:30:28 · 20085 阅读 · 3 评论 -
sklearn模块常用功能总结(20200915)
视频学习:https://www.bilibili.com/video/BV1xW411Y7Qd?p=4系列学习原创 2020-09-15 13:15:42 · 383 阅读 · 0 评论 -
Keras(一)——常用功能总结(20200915)
1、kr.preprocessing.sequence.pad_sequences(转化为相同序列长度)为了实现的简便,keras只能接受长度相同的序列输入。因此如果目前序列长度参差不齐,这时需要使用pad_sequences()。该函数是将序列转化为经过填充以后的一个长度相同的新序列新序列。 官方语法: keras.preprocessing.sequence.pad_sequences(sequences, maxlen=None, dtype='int32', padding=原创 2020-09-11 11:03:02 · 1465 阅读 · 0 评论